欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

python

系統 1620 0

sklearn.preprocessing.RobustScaler:

            
              Init signature:
RobustScaler(
    with_centering=True,
    with_scaling=True,
    quantile_range=(25.0, 75.0),
    copy=True,
)
Docstring:     
Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to
the quantile range (defaults to IQR: Interquartile Range).
The IQR is the range between the 1st quartile (25th quantile)
and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by
computing the relevant statistics on the samples in the training
set. Median and interquartile range are then stored to be used on
later data using the ``transform`` method.

Standardization of a dataset is a common requirement for many
machine learning estimators. Typically this is done by removing the mean
and scaling to unit variance. However, outliers can often influence the
sample mean / variance in a negative way. In such cases, the median and
the interquartile range often give better results.

.. versionadded:: 0.17

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
with_centering : boolean, True by default
    If True, center the data before scaling.
    This will cause ``transform`` to raise an exception when attempted on
    sparse matrices, because centering them entails building a dense
    matrix which in common use cases is likely to be too large to fit in
    memory.

with_scaling : boolean, True by default
    If True, scale the data to interquartile range.

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
    Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
    Quantile range used to calculate ``scale_``.

    .. versionadded:: 0.18

copy : boolean, optional, default is True
    If False, try to avoid a copy and do inplace scaling instead.
    This is not guaranteed to always work inplace; e.g. if the data is
    not a NumPy array or scipy.sparse CSR matrix, a copy may still be
    returned.

Attributes
----------
center_ : array of floats
    The median value for each feature in the training set.

scale_ : array of floats
    The (scaled) interquartile range for each feature in the training set.

    .. versionadded:: 0.17
       *scale_* attribute.

Examples
--------
>>> from sklearn.preprocessing import RobustScaler
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer  # doctest: +NORMALIZE_WHITESPACE
RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
       with_scaling=True)
>>> transformer.transform(X)
array([[ 0. , -2. ,  0. ],
       [-1. ,  0. ,  0.4],
       [ 1. ,  0. , -1.6]])

See also
--------
robust_scale: Equivalent function without the estimator API.

:class:`sklearn.decomposition.PCA`
    Further removes the linear correlation across features with
    'whiten=True'.

Notes
-----
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 浮力影院网站午夜 | 羞羞在线视频 | 国产一区二区三区不卡在线观看 | 99pao成人国产永久免费视频 | 三级精品在线观看 | www.9cao| 国产高清美女一级a毛片久久 | 日韩黄色大全 | 日韩毛片大全免费高清 | 亚洲精品综合一区二区三 | 成人黄色免费 | 国产成人精品一区二区仙踪林 | 久久视屏这里只有精品6国产 | 91精品最新国内在线播放 | 青娱乐手机免费视频 | 亚洲久草 | 国产亚洲欧美日韩v在线 | 久草视频在线首页 | 天堂在线中文 | 五月婷婷丁香六月 | 狠狠操狠狠操 | 亚洲精品影院 | 九九视频精品全部免费播放 | 拍拍拍无遮挡高清视频在线网站 | 欧美亚洲视频在线观看 | 一级一级毛片看看 | 91短视频在线视频 | 蜜臀AV国产精品久久久久 | 日韩影视在线 | 欧美高清成人 | 亚洲国产日韩a在线亚洲 | 成人一区二区在线 | 亚洲天天做日日做天天看2018 | 国产综合在线视频 | 日韩精品一二三区 | 波多野吉衣在线观看 | 奇米影视4色 | 国产在线观看福利 | 亚州第一视频 | 欧美久久网 | 九九热免费视频在线观看 |