欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

模擬退火算法之特征選擇的python實現(一)

系統 2059 0

目錄

1. 模擬退火算法實現步驟?

2. python實現

3. 實驗結果

4. 參考文獻


模擬退火算法的基本原理在這里就不一一贅述了, 關于原理,可以參考百度百科、博客1、博客2

在本節按照基本實現步驟實現模擬退火算法, 對于模擬退火算法的高級封裝(類封裝), 可以參考模擬退火算法之特征選擇的python實現(二)

1. 模擬退火算法實現步驟?

模擬退火算法之特征選擇的python實現(一)_第1張圖片

2. python實現

            
              import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
import scipy.io as sio
from sklearn.model_selection import train_test_split


def get_data_subset(x_data, columns):
    return x_data[:, columns]


def get_initial_solution(feature_size, selected_feature):
    sol = np.arange(feature_size-1)
    np.random.shuffle(sol)
    return sol[:selected_feature]


def get_neighbor(current_solution, feature_size, temperature):
    all_features = range(feature_size-1)
    selected = current_solution
    not_selected = np.setdiff1d(all_features, selected)

    # swap one selected feature with one non-selected feature
    num_swaps = int(min(np.ceil(np.abs(np.random.normal(0, 0.1*len(selected)*temperature))), np.ceil(0.1*len(selected))))
    feature_out = np.random.randint(0, len(selected), num_swaps)  # 產生num_swaps個樣本索引(從range(len(selected))中)
    selected = np.delete(selected, feature_out)

    feature_in = np.random.randint(0, len(not_selected), num_swaps)  # 產生num_swaps個樣本索引(從range(len(not_selected))中)
    selected = np.append(selected, not_selected[feature_in])

    return selected


def get_cost(solution, x_train, x_test, y_train, y_test):
    x_scale, y_scale = StandardScaler(), StandardScaler()
    x_train_scaled = x_scale.fit_transform(x_train)
    x_test_scaled = x_scale.transform(x_test)
    y_train_scaled = y_scale.fit_transform(y_train.reshape(-1, 1))
    y_test_scaled = y_scale.transform(y_test.reshape(-1, 1))
    limited_train_data = get_data_subset(x_train_scaled, solution)
    limited_test_data = get_data_subset(x_test_scaled, solution)
    model = MLPRegressor(hidden_layer_sizes=43)
    model.fit(limited_train_data, y_train_scaled.ravel())
    y_test_pred = model.predict(limited_test_data)
    y_test_pred = y_scale.inverse_transform(y_test_pred)
    return round(mean_squared_error(y_test, y_test_pred), 4)


def get_probability(temperature, delta_cost):
    return np.exp(delta_cost/temperature)


def simulated_annealing(initT, minT, alpha, iterations, features, x_train, x_test, y_train, y_test):
    temperature = initT  # 當前溫度
    solution = get_initial_solution(feature_size=features_size, selected_feature=sel_feature)
    cost = get_cost(solution, x_train, x_test, y_train, y_test)
    temp_history = [temperature]
    best_cost_history = []
    best_solution_history = []
    best_cost = cost
    best_solution = solution
    while temperature > minT:
        for k in range(iterations):
            next_solution = get_neighbor(solution, features, temperature)
            next_cost = get_cost(next_solution, x_train, x_test, y_train, y_test)

            probability = 0
            if next_cost > cost:  # 計算向差方向移動的概率 (即移動后的解比當前解要差)
                probability = get_probability(temperature, cost-next_cost)
            if next_cost < cost or np.random.random() < probability:  # 朝著最優解移動或以一定概率向差方向移動
                cost = next_cost
                solution = next_solution
            if next_cost < best_cost:  # 最優值和最優解
                best_cost = cost
                best_solution = solution
        print("當前溫度:", round(temperature, 2))
        print("當前溫度下最好的得分:", best_cost)
        print("當前溫度下波長數量:", len(solution))
        temperature *= alpha
        temp_history.append(temperature)
        best_cost_history.append(best_cost)
        best_solution_history.append(best_solution)
    return temp_history, best_cost_history, best_solution_history


# 1.數據獲取
mat = sio.loadmat('NDFNDF_smote.mat')
data = mat['NDFNDF_smote']
x, y = data[:, :50], data[:, 50]
print('原始數據大小:', x.shape, y.shape)

# 2.樣本集劃分和預處理
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)

features_size = x.shape[1]
sel_feature = 5
temp_his, best_cost_his, best_solution_his = simulated_annealing(initT=100,
                                                                 minT=1,
                                                                 alpha=0.95,
                                                                 iterations=50,
                                                                                 
features=features_size,
                                                                 x_train=x_train,
                                                                 x_test=x_test,
                                                                 y_train=y_train,
                                                                 y_test=y_test)
            
          

3. 實驗結果

4. 參考文獻

謝云.? 模擬退火算法的原理及實現 . 1999. PhD Thesis.

陳華根, 吳健生, 王家林, & 陳冰. (2004).? 模擬退火算法機理研究 ?(Doctoral dissertation).


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 免费国产一区二区在免费观看 | 啪啪在线看 | 免费视频一区 | 男女免费视频网站 | 91精品啪在线观看国产91九色 | 亚洲高清在线观看看片 | 九九精品视频在线观看九九 | 青草在线观看 | 欧美浮力影院 | 一级片免费播放 | 国产在线精品一区二区夜色 | 亚洲欧美日韩精品久久亚洲区色播 | 欧美精品中文字幕久久二区 | 一区不卡| 中国字幕av| 天天拍天天干天天操 | 国产 一区 | 亚洲精品美女久久777777 | 日韩欧美在线观看视频一区二区 | 午夜在线免费观看视频 | 精品日韩欧美国产一区二区 | 日本午夜在线观看 | 久久我们这里只有精品国产4 | 日日操日日操 | 欧美综合国产 | 日产国产精品久久久久久 | 亚洲情综合五月天 | 亚洲第1页 | 性夜黄a爽爽免费视频国产 尤物tv在线 | 天天色综合天天 | 午夜精品久久久久久久99黑人 | 国产欧美日韩第一页 | 成年人福利 | 欧美成人观看视频在线 | 欧美日韩国产在线 | 日韩中文字幕一区 | 夜夜操免费视频 | 欧美精品福利视频 | 国产99精品 | 人人澡人人澡人人看添欧美 | 碰碰碰人人澡人人爱摸 |