欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

ML| EM

系統(tǒng) 2297 0

What's xxx

The EM algorithm is used to find the maximum likelihood parameters of a statistical model in cases where the equations cannot be solved directly. Typically these models involve latent variables in addition to unknown parameters and known data observations. That is, either there are missing values among the data, or the model can be formulated more simply by assuming the existence of additional unobserved data points.?

The motivation is as follows. If we know the value of the parameters $\boldsymbol\theta$, we can usually find the value of the latent variables $\mathbf{Z}$ by maximizing the log-likelihood over all possible values of $\mathbf{Z}$, either simply by iterating over $\mathbf{Z}$ or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables $\mathbf{Z}$, we can find an estimate of the parameters $\boldsymbol\theta$ fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both $\boldsymbol\theta$ and $\mathbf{Z}$ are unknown:

  1. First, initialize the parameters $\boldsymbol\theta$ to some random values.
  2. Compute the best value for $\mathbf{Z}$ given these parameter values.
  3. Then, use the just-computed values of $\mathbf{Z}$ to compute a better estimate for the parameters $\boldsymbol\theta$. Parameters associated with a particular value of $\mathbf{Z}$ will use only those data points whose associated latent variable has that value.
  4. Iterate steps 2 and 3 until convergence.

The algorithm as just described monotonically approaches a local minimum of the cost function, and is commonly called hard EM . The k-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for $\mathbf{Z}$ given the current parameter values and averaging only over the set of data points associated with a particular value of $\mathbf{Z}$, instead determining the probability of each possible value of $\mathbf{Z}$ for each data point, and then using the probabilities associated with a particular value of $\mathbf{Z}$ to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM.?

With the ability to deal with missing data and observe unidentified variables, EM is becoming a useful tool to price and manage risk of a portfolio.

Algorithm

Given a statistical model consisting of a set $\mathbf{X}$ of observed data, a set of unobserved latent data or missing values $\mathbf{Z}$, and a vector of unknown parameters $\boldsymbol\theta$, along with a likelihood function $L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta)$, the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data

$L(\boldsymbol\theta; \mathbf{X}) = p(\mathbf{X}|\boldsymbol\theta) = \sum_{\mathbf{Z}} p(\mathbf{X},\mathbf{Z}|\boldsymbol\theta) $
However, this quantity is often intractable (e.g. if $\mathbf{Z}$ is a sequence of events, so that the number of values grows exponentially with the sequence length, making the exact calculation of the sum extremely difficult).

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

1. Expectation step (E step) : Calculate the expected value of the log likelihood function, with respect to the conditional distribution of $\mathbf{Z}$ given $\mathbf{X}$ under the current estimate of the parameters $\boldsymbol\theta^{(t)}$:
$Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) = \operatorname{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol\theta^{(t)}}\left[ \log L (\boldsymbol\theta;\mathbf{X},\mathbf{Z}) \right] \,$
2. Maximization step (M step): Find the parameter that maximizes this quantity:
$\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta}{\operatorname{arg\,max}} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \, $
Note that in typical models to which EM is applied:

  • The observed data points $\mathbf{X}$ may be discrete (taking values in a finite or countably infinite set) or continuous (taking values in an uncountably infinite set). There may in fact be a vector of observations associated with each data point.
  • The missing values (aka latent variables) $\mathbf{Z}$ are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  • The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

ML| EM


更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號(hào)聯(lián)系: 360901061

您的支持是博主寫(xiě)作最大的動(dòng)力,如果您喜歡我的文章,感覺(jué)我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對(duì)您有幫助就好】

您的支持是博主寫(xiě)作最大的動(dòng)力,如果您喜歡我的文章,感覺(jué)我的文章對(duì)您有幫助,請(qǐng)用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長(zhǎng)會(huì)非常 感謝您的哦!!!

發(fā)表我的評(píng)論
最新評(píng)論 總共0條評(píng)論
主站蜘蛛池模板: 色哟哟哟在线观看www | 超碰伊人网 | 国产一起色一起爱 | 亚洲综合欧美 | 天堂亚洲网 | 亚洲阿v天堂2021在线观看 | 91看片淫黄大片欧美看国产片 | 天天色综合天天 | 欧美国产日韩在线 | 日韩国产无矿砖一线二线图 | 亚州a| 亚洲蜜桃AV色情精品成人 | 亚洲视频 在线观看 | 全免费A敌肛交毛片免费 | 香蕉一区二区 | 秋霞日韩久久理论电影 | 日韩成人在线播放 | 国产目拍亚洲精品99久久精品 | 亚洲永久中文字幕在线 | 久久午夜影院 | 国产精品高清在线 | 国产一区二区在线看 | 午夜社区 | 免费一区二区三区 | 欧美视频a| 我不卡午夜 | 毛片少妇爽到高潮特黄A片 六月色播 | 天天做天天干 | 欧美影院推理片免费看 | 中文字幕免费在线观看 | 成人禁在线观看网站 | 国产精品久久久AV久久久 | 91成人小视频 | 国产精品揄拍100视频最近 | 久久久久亚洲精品 | 性香港xxxxx免费视频播放 | 97超碰人人草 | 欧美一级毛片欧美大尺度一级毛片 | 丁香婷婷在线观看 | 成人免费大片a毛片 | a级毛片免费高清视频 |