母函數(shù)(Generating function)詳解
在數(shù)學(xué)中,某個(gè)序列的母函數(shù)是一種形式冪級(jí)數(shù),其每一項(xiàng)的系數(shù)可以提供關(guān)于這個(gè)序列的信息。使用母函數(shù)解決問題的方法稱為母函數(shù)方法。
母函數(shù)可分為很多種,包括普通母函數(shù)、指數(shù)母函數(shù)、L級(jí)數(shù)、貝爾級(jí)數(shù)和狄利克雷級(jí)數(shù)。對(duì)每個(gè)序列都可以寫出以上每個(gè)類型的一個(gè)母函數(shù)。構(gòu)造母函數(shù)的目的一般是為了解決某個(gè)特定的問題,因此選用何種母函數(shù)視乎序列本身的特性和問題的類型。
這里先給出兩句話,不懂的可以等看完這篇文章再回過頭來看:
"把組合問題的加法法則和冪級(jí)數(shù)的t的乘冪的相加對(duì)應(yīng)起來"
"母函數(shù)的思想很簡(jiǎn)單—就是把離散數(shù)列和冪級(jí)數(shù)一一對(duì)應(yīng)起來,把離散數(shù)列間的相互結(jié)合關(guān)系對(duì)應(yīng)成為冪級(jí)數(shù)間的運(yùn)算關(guān)系,最后由冪級(jí)數(shù)形式來確定離散數(shù)列的構(gòu)造. "
我們首先來看下這個(gè)多項(xiàng)式乘法:
由此可以看出:
1. x的系數(shù)是a1,a2,…an的單個(gè)組合的全體。
2. x2的系數(shù)是a1,a2,…an的兩個(gè)組合的全體。
………
n. xn的系數(shù)是a1,a2,….an的n個(gè)組合的全體(只有1個(gè))。
由此得到:
?
母函數(shù)的定義:
對(duì)于序列a0,a1,a2,…構(gòu)造一函數(shù):
稱函數(shù)G(x)是序列a0,a1,a2,…的母函數(shù)
這里先給出2個(gè)例子,等會(huì)再結(jié)合題目分析:
第一種:
?
有1克、2克、3克、4克的砝碼各一枚,能稱出哪幾種重量?每種重量各有幾種可能方案??
考慮用母函數(shù)來接吻這個(gè)問題:
我們假設(shè)x表示砝碼,x的指數(shù)表示砝碼的重量,這樣:
1個(gè)1克的砝碼可以用函數(shù)1+x表示,
1個(gè)2克的砝碼可以用函數(shù)1+x2表示,
1個(gè)3克的砝碼可以用函數(shù)1+x3表示,
1個(gè)4克的砝碼可以用函數(shù)1+x4表示,
上面這四個(gè)式子懂嗎?
我們拿1+x2來說,前面已經(jīng)說過,x表示砝碼,x的指數(shù)表示重量,即這里就是一個(gè)質(zhì)量為2的砝碼,那么前面的1表示什么?1代表重量為2的砝碼數(shù)量為0個(gè)。(理解!)
不知道大家理解沒,我們這里結(jié)合前面那句話:
"把組合問題的加法法則和冪級(jí)數(shù)的t的乘冪的相加對(duì)應(yīng)起來"
1+x2表示了兩種情況:1表示質(zhì)量為2的砝碼取0個(gè)的情況,x2表示質(zhì)量為2的砝碼取1個(gè)的情況。
這里說下各項(xiàng)系數(shù)的意義:
在x前面的系數(shù)a表示相應(yīng)質(zhì)量的砝碼取a個(gè),而1就表示相應(yīng)砝碼取0個(gè),這里可不能簡(jiǎn)單的認(rèn)為相應(yīng)砝碼取0個(gè)就該是0*x2(想下為何?結(jié)合數(shù)學(xué)式子)。
所以,前面說的那句話的意義大家可以理解了吧?
幾種砝碼的組合可以稱重的情況,可以用以上幾個(gè)函數(shù)的乘積表示:
(1+x)(1+x2)(1+x3)(1+x4)
=(1+x+x2+x3)(1+x3+x4+x7)
=1+x+x2+2x3+2x4+2x5+2x6+2x7+x8+x9+x10?
從上面的函數(shù)知道:可稱出從1克到10克,系數(shù)便是方案數(shù)。(!!!經(jīng)典!!!)
? ? 例如右端有2x5 項(xiàng),即稱出5克的方案有2:5=3+2=4+1;同樣,6=1+2+3=4+2;10=1+2+3+4。
? ? 故稱出6克的方案有2,稱出10克的方案有1。
接著上面,接下來是第二種情況:
求用1分、2分、3分的郵票貼出不同數(shù)值的方案數(shù):
大家把這種情況和第一種比較有何區(qū)別?第一種每種是一個(gè),而這里每種是無限的。
以展開后的x4為例,其系數(shù)為4,即4拆分成1、2、3之和的拆分?jǐn)?shù)為4;
即 :4=1+1+1+1=1+1+2=1+3=2+2
這里再引出兩個(gè)概念整數(shù)拆分和拆分?jǐn)?shù):
?
所謂整數(shù)拆分即把整數(shù)分解成若干整數(shù)的和(相當(dāng)于把n個(gè)無區(qū)別的球放到n個(gè)無標(biāo)志的盒子,盒子允許空,也允許放多于一個(gè)球)。
整數(shù)拆分成若干整數(shù)的和,辦法不一,不同拆分法的總數(shù)叫做拆分?jǐn)?shù)。
現(xiàn)在以上面的第二種情況每種種類個(gè)數(shù)無限為例,給出模板:
#include<iostream> using namespace std; const int _max = 121; //c1是保存各項(xiàng)質(zhì)量砝碼可以組合的數(shù)目 //c2是中間量,保存沒一次的情況 int c1[_max], c2[_max]; int main() { //int n,i,j,k; int nNum; // int i, j, k; while(cin >> nNum && nNum) { for(i=0; i<=nNum; ++i) // ---- ① { c1[i] = 1; c2[i] = 0; } for(i=2; i<=nNum; ++i) // ----- ② { for(j=0; j<=nNum; ++j) // ----- ③ for(k=0; k+j<=nNum; k+=i) // ---- ④ { c2[j+k] += c1[j]; } for(j=0; j<=nNum; ++j) // ---- ⑤ { c1[j] = c2[j]; c2[j] = 0; } } cout << c1[nNum] << endl; } return 0; }
我們來解釋下上面標(biāo)志的各個(gè)地方:
① 、首先對(duì)c1初始化,由第一個(gè)表達(dá)式(1+x+x2+..xn)初始化,把質(zhì)量從0到n的所有砝碼都初始化為1.
?
② 、 i從2到n遍歷,這里i就是指第i個(gè)表達(dá)式,上面給出的第二種母函數(shù)關(guān)系式里,每一個(gè)括號(hào)括起來的就是一個(gè)表達(dá)式。
?
?
③、j 從0到n遍歷,這里j就是只一個(gè)表達(dá)式里第j個(gè)變量,比如在第二個(gè)表達(dá)式里:(1+x2+x4....)里,第j個(gè)就是x2*j.
?
③ k表示的是第j個(gè)指數(shù),所以k每次增i(因?yàn)榈趇個(gè)表達(dá)式的增量是i)。
?
④ 、把c2的值賦給c1,而把c2初始化為0,因?yàn)閏2每次是從一個(gè)表達(dá)式中開始的
?
咱們趕快趁熱打鐵,來幾道題目:
(相應(yīng)題目解析均在相應(yīng)的代碼里分析)
1. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1028
代碼:http://www.wutianqi.com/?p=587
這題大家看看簡(jiǎn)單不?把上面的模板理解了,這題就是小Case!
?
看看這題:
2. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1398
代碼:http://www.wutianqi.com/?p=590
要說和前一題的區(qū)別,就只需要改2個(gè)地方。 在i遍歷表達(dá)式時(shí)(可以參考我的資料---《母函數(shù)詳解》),把i<=nNum改成了i*i<=nNum,其次在k遍歷指數(shù)時(shí)把k+=i變成了k+=i*i; Ok,說來說去還是套模板~~~
?
3. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1085
代碼:http://www.wutianqi.com/?p=592
這題終于變化了一點(diǎn),但是萬變不離其中。
大家好好分析下,結(jié)合代碼就會(huì)懂了。
?
4. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1171
代碼:http://www.wutianqi.com/?p=594
?
?
?
還有一些題目,大家有時(shí)間自己做做:
HDOJ:1709,1028、1709、1085、1171、1398、2069、2152
附:
1.在維基百科里講到了普通母函數(shù)、指數(shù)母函數(shù)、L級(jí)數(shù)、貝爾級(jí)數(shù)和狄利克雷級(jí)數(shù):
http://zh.wikipedia.org/zh-tw/%E6%AF%8D%E5%87%BD%E6%95%B0
2.Matrix67大牛那有篇文章:什么是生成函數(shù):
http://www.matrix67.com/blog/archives/120
3.大家可以看看杭電的ACM課件的母函數(shù)那篇,我這里的圖片以及一些內(nèi)容都引至那。
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
