#include#include#include#include#include#include#include#includeusingnamespacestd;typ" />

黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

【POJ】1269 Intersecting Lines(計算幾何基礎

系統 2504 0

http://poj.org/problem?id=1269

我會說這種水題我手推公式+碼代碼用了1.5h?

還好新的一年里1A了~~~~

      #include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

#include <set>

#include <map>

using namespace std;

typedef long long ll;

#define pii pair<int, int>

#define mkpii make_pair<int, int>

#define pdi pair<double, int>

#define mkpdi make_pair<double, int>

#define pli pair<ll, int>

#define mkpli make_pair<ll, int>

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << (#x) << " = " << (x) << endl

#define error(x) (!(x)?puts("error"):0)

#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }

#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const int max(const int &a, const int &b) { return a>b?a:b; }

inline const int min(const int &a, const int &b) { return a<b?a:b; }



const double eps=1e-6;

struct Pt { double x, y; Pt(double _x=0, double _y=0) : x(_x), y(_y) {} };

int dcmp(double a) { if(abs(a)<eps) return 0; return a<0?-1:1; }

typedef Pt Vt;

Vt operator+ (const Pt &a, const Pt &b) { return Vt(a.x+b.x, a.y+b.y); }

Vt operator- (const Pt &a, const Pt &b) { return Vt(a.x-b.x, a.y-b.y); }

Vt operator* (const Pt &a, const double &b) { return Vt(a.x*b, a.y*b); }

bool operator== (const Pt &a, const Pt &b) { return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; }

double Cross(Vt a, Vt b) { return a.x*b.y-b.x*a.y; }



struct Line {

	Pt p; Vt v;

	Line() {}

	Line(Pt &a, Pt &b) { p=a; v=b-a; }

};



Pt getLLP(Line &a, Line &b) {

	static Pt p, q;

	static Vt u, w, v;

	p=a.p; q=b.p;

	v=a.v; w=b.v;

	u=p-q;

	double t1=Cross(w, u)/Cross(v, w);

	return p+v*t1;

}

// -1:xiangjiao 0:chonghe 1:pingxing

int LineAndLine(Line &p, Line &q) {

	if(dcmp(Cross(p.v, q.v))!=0) return -1;

	return dcmp(Cross(q.p-p.p, q.v))==0 && dcmp(Cross(q.p-p.p, p.v))==0;

}

int main() {

	int n;

	while(~scanf("%d", &n)) {

		puts("INTERSECTING LINES OUTPUT");

		Line l[2]; Pt p[4];

		while(n--) {

			rep(k, 4) scanf("%lf%lf", &p[k].x, &p[k].y);

			l[0]=Line(p[0], p[1]);

			l[1]=Line(p[2], p[3]);

			int c=LineAndLine(l[0], l[1]);

			if(c==-1) { Pt pt=getLLP(l[0], l[1]); printf("POINT %.2f %.2f\n", pt.x, pt.y); }

			else if(c==0) puts("NONE");

			else puts("LINE");

		}

		puts("END OF OUTPUT");

	}

	return 0;

}


    

?


?

?

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.?
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.?

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

            5

0 0 4 4 0 4 4 0

5 0 7 6 1 0 2 3

5 0 7 6 3 -6 4 -3

2 0 2 27 1 5 18 5

0 3 4 0 1 2 2 5


          

Sample Output

            INTERSECTING LINES OUTPUT

POINT 2.00 2.00

NONE

LINE

POINT 2.00 5.00

POINT 1.07 2.20

END OF OUTPUT


          

Source

【POJ】1269 Intersecting Lines(計算幾何基礎)


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論