黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

詳解利用Python scipy.signal.filtfilt() 實現信號

系統 2472 0

本文將以實戰的形式基于scipy模塊使用Python實現簡單濾波處理,包括內容有1.低通濾波,2.高通濾波,3.帶通濾波,4.帶阻濾波器。具體的含義大家可以查閱大學課程,信號與系統。簡單的理解就是低通濾波指的是去除高于某一閾值頻率的信號;高通濾波去除低于某一頻率的信號;帶通濾波指的是類似低通高通的結合保留中間頻率信號;帶阻濾波也是低通高通的結合只是過濾掉的是中間部分。上面所說的內容會在實戰部分加以介紹,可以對比理解一下。

如何實現的呢?我的理解,是通過時域轉換為頻域,在頻域信號中去除相應頻域信號,最后在逆轉換還原為時域型號。具體的內容還是要查閱大學課程,信號與系統。自己學的很一般就不班門弄斧了。

有什么作用呢?My Opinions,可以消除一些干擾信號,以低通濾波為例,例如我們如果只是統計脈搏信號波形,應該在1Hz左右,卻發現波形信號上有很多噪音,這些噪音都是成百上千Hz的,這些對于脈搏信號波形就屬于無用的噪音,我們就可以通過低通濾波器將超出某一閾值的信號過濾掉,此時得到的波形就會比較平滑了。

在使用Python進行信號處理過程中,利用 scipy.signal.filtfilt()可以快速幫助實現信號的濾波。

1.函數的介紹

(1).濾波函數

scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)

輸入參數:

b: 濾波器的分子系數向量

a: 濾波器的分母系數向量

x: 要過濾的數據數組。(array型)

axis: 指定要過濾的數據數組x的軸

padtype: 必須是“奇數”、“偶數”、“常數”或“無”。這決定了用于過濾器應用的填充信號的擴展類型。{‘odd', ‘even', ‘constant', None}

padlen:在應用濾波器之前在軸兩端延伸X的元素數目。此值必須小于要濾波元素個數- 1。(int型或None)

method:確定處理信號邊緣的方法。當method為“pad”時,填充信號;填充類型padtype和padlen決定,irlen被忽略。當method為“gust”時,使用古斯塔夫森方法,而忽略padtype和padlen。{“pad” ,“gust”}

irlen:當method為“gust”時,irlen指定濾波器的脈沖響應的長度。如果irlen是None,則脈沖響應的任何部分都被忽略。對于長信號,指定irlen可以顯著改善濾波器的性能。(int型或None)

輸出參數:

y:濾波后的數據數組

(2).濾波器構造函數(僅介紹Butterworth濾波器)

scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')

輸入參數:

N:濾波器的階數

Wn:歸一化截止頻率。計算公式Wn=2*截止頻率/采樣頻率。(注意:根據采樣定理,采樣頻率要大于兩倍的信號本身最大的頻率,才能還原信號。截止頻率一定小于信號本身最大的頻率,所以Wn一定在0和1之間)。當構造帶通濾波器或者帶阻濾波器時,Wn為長度為2的列表。

btype : 濾波器類型{‘lowpass', ‘highpass', ‘bandpass', ‘bandstop'},

output : 輸出類型{‘ba', ‘zpk', ‘sos'},

輸出參數:

b,a: IIR濾波器的分子(b)和分母(a)多項式系數向量。output='ba'

z,p,k: IIR濾波器傳遞函數的零點、極點和系統增益. output= 'zpk'

sos: IIR濾波器的二階截面表示。output= 'sos'

2.函數的使用

信號濾波中最常用的無非低通濾波、高通濾波和帶通濾波。下面簡單介紹這三種濾波的使用過程:

(1).高通濾波

#這里假設采樣頻率為1000hz,信號本身最大的頻率為500hz,要濾除10hz以下頻率成分,即截至頻率為10hz,則wn=2*10/1000=0.02

            
from scipy import signal

b, a = signal.butter(8, 0.02, 'highpass')
filtedData = signal.filtfilt(b, a, data)#data為要過濾的信號


          

(2).低通濾波

            
#這里假設采樣頻率為1000hz,信號本身最大的頻率為500hz,要濾除10hz以上頻率成分,即截至頻率為10hz,則wn=2*10/1000=0.02

from scipy import signal

b, a = signal.butter(8, 0.02, 'lowpass') 
filtedData = signal.filtfilt(b, a, data)    #data為要過濾的信號


          

(3).帶通濾波

            
#這里假設采樣頻率為1000hz,信號本身最大的頻率為500hz,要濾除10hz以下和400hz以上頻率成分,即截至頻率為10hz和400hz,則wn1=2*10/1000=0.02,wn2=2*400/1000=0.8。Wn=[0.02,0.8]

from scipy import signal

b, a = signal.butter(8, [0.02,0.8], 'bandpass')
filtedData = signal.filtfilt(b, a, data)  #data為要過濾的信號


          

?參考:

1.https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.filtfilt.html

2.https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.butter.html#scipy.signal.butter

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論