欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別

系統(tǒng) 2314 0
  • 概述

神經(jīng)網(wǎng)路顧名思義將生物的神經(jīng)系統(tǒng)中的興奮與抑制比作計算機中的0和1

知識點:

  1. 神經(jīng)網(wǎng)絡(luò)原理
  2. 神經(jīng)網(wǎng)絡(luò)中的非線性矯正
  3. 神經(jīng)網(wǎng)絡(luò)參數(shù)設(shè)置
  • 參數(shù)設(shè)置

重要參數(shù):

activation:隱藏單元進(jìn)行非線性化的方法,一共4總:identity,logistic,tanh,relu

alpha:正則化參數(shù),默認(rèn)為0.0001,參數(shù)越大算法越簡單

hidden_layer_size:設(shè)置隱藏層的結(jié)點和層數(shù):[10,10]表示2層,每層結(jié)點為10? ? ? ?

?

  • 圖像分析

            
              import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_wine

from sklearn.model_selection import train_test_split
wine = load_wine()
X = wine.data[:,:2]#只取前2個屬性
y = wine.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh',alpha=1)
mlp.fit(X_train,y_train)

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

cmap_light = ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000','#00FF00','#0000FF'])
                            
x_min, x_max = X[:,0].min() -1,X[:,0].max()+1
y_min, y_max = X[:,1].min() -1,X[:,1].max()+1
xx,yy = np.meshgrid(np.arange(x_min,x_max,.02),np.arange(y_min,y_max,.02))
z = mlp.predict(np.c_[xx.ravel(),yy.ravel()])
z = z.reshape(xx.shape)

plt.figure()
plt.pcolormesh(xx,yy,z,cmap=cmap_light)

plt.scatter(X[:,0],X[:,1],c=y,cmap=cmap_bold,edgecolor='k',s=20)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())

plt.show()

print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
            
          

通過內(nèi)置紅酒數(shù)據(jù)集可畫出神經(jīng)網(wǎng)絡(luò)算法圖:

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別_第1張圖片

將正則化參數(shù)恢復(fù)為默認(rèn)后:

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh')

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別_第2張圖片

可見參數(shù)對效果的影響。

?

  • 實例--手寫識別

使用內(nèi)置數(shù)據(jù)集“l(fā)oad_digits

查看參數(shù):

            
              print(digits.keys())#數(shù)據(jù)集中的建
print(digits.data[0])#第一個數(shù)據(jù)
print(digits.target[0])#第一個數(shù)據(jù)的類型
print(digits.DESCR)#描述
            
          
            
              dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])
[ 0.  0.  5. 13.  9.  1.  0.  0.  0.  0. 13. 15. 10. 15.  5.  0.  0.  3.
 15.  2.  0. 11.  8.  0.  0.  4. 12.  0.  0.  8.  8.  0.  0.  5.  8.  0.
  0.  9.  8.  0.  0.  4. 11.  0.  1. 12.  7.  0.  0.  2. 14.  5. 10. 12.
  0.  0.  0.  0.  6. 13. 10.  0.  0.  0.]
0
.. _digits_dataset:

Optical recognition of handwritten digits dataset
--------------------------------------------------

**Data Set Characteristics:**

    :Number of Instances: 5620
    :Number of Attributes: 64
    :Attribute Information: 8x8 image of integer pixels in the range 0..16.
    :Missing Attribute Values: None
    :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
    :Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where
each class refers to a digit.

Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates
an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994.

.. topic:: References

  - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
    Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
    Graduate Studies in Science and Engineering, Bogazici University.
  - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
  - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
    Linear dimensionalityreduction using relevance weighted LDA. School of
    Electrical and Electronic Engineering Nanyang Technological University.
    2005.
  - Claudio Gentile. A New Approximate Maximal Margin Classification
    Algorithm. NIPS. 2000.
            
          

通過描述幸喜可以發(fā)現(xiàn)圖片為8*8的大小

完整代碼:

            
              #MNIST數(shù)據(jù)集
from sklearn.datasets import load_digits
digits = load_digits()
X=digits.data
y=digits.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='relu',random_state=62)
mlp.fit(X_train,y_train)

print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)
print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
#導(dǎo)入圖像處理工具
from PIL import Image

image = Image.open('1.png').convert('F')
image = image.resize((8,8))
arr = []

for i in range(8):
    for j in range(8):
        pixel = 1.0 - float(image.getpixel((j,i)))/255
        arr.append(pixel)
        
arr1 = np.array(arr).reshape(1,-1)

for i in range(10):
    print('{}的概率為:{}'.format(i,mlp.predict_proba(arr1)[0][i]))
print('結(jié)果為:{}'.format(mlp.predict(arr1)[0]))
            
          

更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 日韩精品视频一区二区三区 | 欧美顶级毛片在线播放 | 日韩欧美视频一区二区在线观看 | 亚洲国产一区二区三区四区 | 欧美日韩国产在线人成dvd | 日本欧美一二三区色视频 | 中文久久| 中文字幕日韩理论在线 | 国产成人精品久久二区二区91 | 青草草在线观看免费视频 | 综合网视频 | 91亚洲国产成人精品性色 | 欧美日韩中文在线视频 | 美腿丝袜亚洲综合 | 性夜影院爽黄a爽免费看网站 | 九九99九九在线精品视频 | 日韩经典视频 | 91在线播放视频 | 傲视影院午夜毛片 | 8844aa在线毛片 | 91涩涩视频 | 艹逼视频免费 | 久久中文字幕2021精品 | 中文字幕一区二区三区四区 | 毛片免费看电影 | 欧美成人精品一区二区三区 | 成人在线播放视频 | 青娱乐在线免费观看视频 | 国产成人91 | 精品久久一区二区 | 久久精品国产清自在天天线 | 韩国资源视频一区二区三区 | 亚洲视频aaa| 午夜视频在线看 | 夜夜艹 | 性视频亚洲 | 国产精品久久久久久日本一道 | 日韩欧美一级大片 | 91欧美国产| 波多野结衣精品一区二区三区 | 色综合啪啪 |