欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別

系統(tǒng) 2314 0
  • 概述

神經(jīng)網(wǎng)路顧名思義將生物的神經(jīng)系統(tǒng)中的興奮與抑制比作計算機中的0和1

知識點:

  1. 神經(jīng)網(wǎng)絡(luò)原理
  2. 神經(jīng)網(wǎng)絡(luò)中的非線性矯正
  3. 神經(jīng)網(wǎng)絡(luò)參數(shù)設(shè)置
  • 參數(shù)設(shè)置

重要參數(shù):

activation:隱藏單元進(jìn)行非線性化的方法,一共4總:identity,logistic,tanh,relu

alpha:正則化參數(shù),默認(rèn)為0.0001,參數(shù)越大算法越簡單

hidden_layer_size:設(shè)置隱藏層的結(jié)點和層數(shù):[10,10]表示2層,每層結(jié)點為10? ? ? ?

?

  • 圖像分析

            
              import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_wine

from sklearn.model_selection import train_test_split
wine = load_wine()
X = wine.data[:,:2]#只取前2個屬性
y = wine.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh',alpha=1)
mlp.fit(X_train,y_train)

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

cmap_light = ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000','#00FF00','#0000FF'])
                            
x_min, x_max = X[:,0].min() -1,X[:,0].max()+1
y_min, y_max = X[:,1].min() -1,X[:,1].max()+1
xx,yy = np.meshgrid(np.arange(x_min,x_max,.02),np.arange(y_min,y_max,.02))
z = mlp.predict(np.c_[xx.ravel(),yy.ravel()])
z = z.reshape(xx.shape)

plt.figure()
plt.pcolormesh(xx,yy,z,cmap=cmap_light)

plt.scatter(X[:,0],X[:,1],c=y,cmap=cmap_bold,edgecolor='k',s=20)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())

plt.show()

print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
            
          

通過內(nèi)置紅酒數(shù)據(jù)集可畫出神經(jīng)網(wǎng)絡(luò)算法圖:

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別_第1張圖片

將正則化參數(shù)恢復(fù)為默認(rèn)后:

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh')

python--MLP神經(jīng)網(wǎng)絡(luò)實現(xiàn)手寫數(shù)字識別_第2張圖片

可見參數(shù)對效果的影響。

?

  • 實例--手寫識別

使用內(nèi)置數(shù)據(jù)集“l(fā)oad_digits

查看參數(shù):

            
              print(digits.keys())#數(shù)據(jù)集中的建
print(digits.data[0])#第一個數(shù)據(jù)
print(digits.target[0])#第一個數(shù)據(jù)的類型
print(digits.DESCR)#描述
            
          
            
              dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])
[ 0.  0.  5. 13.  9.  1.  0.  0.  0.  0. 13. 15. 10. 15.  5.  0.  0.  3.
 15.  2.  0. 11.  8.  0.  0.  4. 12.  0.  0.  8.  8.  0.  0.  5.  8.  0.
  0.  9.  8.  0.  0.  4. 11.  0.  1. 12.  7.  0.  0.  2. 14.  5. 10. 12.
  0.  0.  0.  0.  6. 13. 10.  0.  0.  0.]
0
.. _digits_dataset:

Optical recognition of handwritten digits dataset
--------------------------------------------------

**Data Set Characteristics:**

    :Number of Instances: 5620
    :Number of Attributes: 64
    :Attribute Information: 8x8 image of integer pixels in the range 0..16.
    :Missing Attribute Values: None
    :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
    :Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where
each class refers to a digit.

Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates
an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994.

.. topic:: References

  - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
    Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
    Graduate Studies in Science and Engineering, Bogazici University.
  - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
  - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
    Linear dimensionalityreduction using relevance weighted LDA. School of
    Electrical and Electronic Engineering Nanyang Technological University.
    2005.
  - Claudio Gentile. A New Approximate Maximal Margin Classification
    Algorithm. NIPS. 2000.
            
          

通過描述幸喜可以發(fā)現(xiàn)圖片為8*8的大小

完整代碼:

            
              #MNIST數(shù)據(jù)集
from sklearn.datasets import load_digits
digits = load_digits()
X=digits.data
y=digits.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)

mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='relu',random_state=62)
mlp.fit(X_train,y_train)

print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)
print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
#導(dǎo)入圖像處理工具
from PIL import Image

image = Image.open('1.png').convert('F')
image = image.resize((8,8))
arr = []

for i in range(8):
    for j in range(8):
        pixel = 1.0 - float(image.getpixel((j,i)))/255
        arr.append(pixel)
        
arr1 = np.array(arr).reshape(1,-1)

for i in range(10):
    print('{}的概率為:{}'.format(i,mlp.predict_proba(arr1)[0][i]))
print('結(jié)果為:{}'.format(mlp.predict(arr1)[0]))
            
          

更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 国产日韩欧美视频在线观看 | 成人午夜免费剧场 | 欧美激情视频网 | 天天爱夜夜 | 亚洲精品福利一区二区三区 | 精品免费久久久久久成人影院 | 亚洲视频国产精品 | 久久久综合九色合综国产 | 亚洲美女亚洲精品久久久久 | 国产片自拍| 色片免费在线观看 | 久青草影视| 在线观看国产 | 亚洲视频国产一区 | 韩国三级中文字幕hd久久精品 | 成人黄色短视频在线观看 | 国产激情视频 | 手机在线观看你懂得 | 亚洲精品不卡 | 欧美日韩色综合网站 | 久久综合丁香激情久久 | 亚洲三级视频在线观看 | 国产麻豆剧传媒精品好看的片 | 成人精品综合免费视频 | 丝袜诱惑中文字幕 | 羞羞的视频在线 | 午夜性电影 | 日本中文字幕在线观看 | 美女狠狠干 | 91视频.com| 伊人a.v在线| 精品九九 | 国产精品久久久久影视青草 | 视频一区中文字幕 | 91 在线| 天天色天天射天天干 | 久草在线首页 | 天天插一插 | 欧美视频www | 成人av观看 | 青青青国产观看免费视频 |