-
概述
神經(jīng)網(wǎng)路顧名思義將生物的神經(jīng)系統(tǒng)中的興奮與抑制比作計算機中的0和1
知識點:
- 神經(jīng)網(wǎng)絡(luò)原理
- 神經(jīng)網(wǎng)絡(luò)中的非線性矯正
- 神經(jīng)網(wǎng)絡(luò)參數(shù)設(shè)置
-
參數(shù)設(shè)置
重要參數(shù):
activation:隱藏單元進(jìn)行非線性化的方法,一共4總:identity,logistic,tanh,relu
alpha:正則化參數(shù),默認(rèn)為0.0001,參數(shù)越大算法越簡單
hidden_layer_size:設(shè)置隱藏層的結(jié)點和層數(shù):[10,10]表示2層,每層結(jié)點為10? ? ? ?
?
-
圖像分析
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
wine = load_wine()
X = wine.data[:,:2]#只取前2個屬性
y = wine.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)
mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh',alpha=1)
mlp.fit(X_train,y_train)
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
cmap_light = ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000','#00FF00','#0000FF'])
x_min, x_max = X[:,0].min() -1,X[:,0].max()+1
y_min, y_max = X[:,1].min() -1,X[:,1].max()+1
xx,yy = np.meshgrid(np.arange(x_min,x_max,.02),np.arange(y_min,y_max,.02))
z = mlp.predict(np.c_[xx.ravel(),yy.ravel()])
z = z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,z,cmap=cmap_light)
plt.scatter(X[:,0],X[:,1],c=y,cmap=cmap_bold,edgecolor='k',s=20)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
plt.show()
print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
通過內(nèi)置紅酒數(shù)據(jù)集可畫出神經(jīng)網(wǎng)絡(luò)算法圖:
將正則化參數(shù)恢復(fù)為默認(rèn)后:
mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='tanh')
可見參數(shù)對效果的影響。
?
-
實例--手寫識別
使用內(nèi)置數(shù)據(jù)集“l(fā)oad_digits
查看參數(shù):
print(digits.keys())#數(shù)據(jù)集中的建
print(digits.data[0])#第一個數(shù)據(jù)
print(digits.target[0])#第一個數(shù)據(jù)的類型
print(digits.DESCR)#描述
dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])
[ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5. 0. 0. 3.
15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8. 8. 0. 0. 5. 8. 0.
0. 9. 8. 0. 0. 4. 11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12.
0. 0. 0. 0. 6. 13. 10. 0. 0. 0.]
0
.. _digits_dataset:
Optical recognition of handwritten digits dataset
--------------------------------------------------
**Data Set Characteristics:**
:Number of Instances: 5620
:Number of Attributes: 64
:Attribute Information: 8x8 image of integer pixels in the range 0..16.
:Missing Attribute Values: None
:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
:Date: July; 1998
This is a copy of the test set of the UCI ML hand-written digits datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
The data set contains images of hand-written digits: 10 classes where
each class refers to a digit.
Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates
an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions.
For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994.
.. topic:: References
- C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
Graduate Studies in Science and Engineering, Bogazici University.
- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
Linear dimensionalityreduction using relevance weighted LDA. School of
Electrical and Electronic Engineering Nanyang Technological University.
2005.
- Claudio Gentile. A New Approximate Maximal Margin Classification
Algorithm. NIPS. 2000.
通過描述幸喜可以發(fā)現(xiàn)圖片為8*8的大小
完整代碼:
#MNIST數(shù)據(jù)集
from sklearn.datasets import load_digits
digits = load_digits()
X=digits.data
y=digits.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)
mlp = MLPClassifier(solver = 'lbfgs',hidden_layer_sizes=[100,100],activation='relu',random_state=62)
mlp.fit(X_train,y_train)
print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)
print("訓(xùn)練得分:{:.2f}".format(mlp.score(X_train,y_train)))
print("測試得分:{:.2f}".format(mlp.score(X_test,y_test)))
#導(dǎo)入圖像處理工具
from PIL import Image
image = Image.open('1.png').convert('F')
image = image.resize((8,8))
arr = []
for i in range(8):
for j in range(8):
pixel = 1.0 - float(image.getpixel((j,i)))/255
arr.append(pixel)
arr1 = np.array(arr).reshape(1,-1)
for i in range(10):
print('{}的概率為:{}'.format(i,mlp.predict_proba(arr1)[0][i]))
print('結(jié)果為:{}'.format(mlp.predict(arr1)[0]))
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯(lián)系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
