黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

用Python實現(xiàn)最速下降法求極值的方法

系統(tǒng) 3168 0

對于一個多元函數(shù) ,用最速下降法(又稱梯度下降法)求其極小值的迭代格式為

其中 為負梯度方向,即最速下降方向,αkαk為搜索步長。

一般情況下,最優(yōu)步長αkαk的確定要用到線性搜索技術,比如精確線性搜索,但是更常用的是不精確線性搜索,主要是Goldstein不精確線性搜索和Wolfe法線性搜索。

為了調(diào)用的方便,編寫一個Python文件,里面存放線性搜索的子函數(shù),命名為linesearch.py,這里先只編寫了Goldstein線性搜索的函數(shù),關于Goldstein原則,可以參看最優(yōu)化課本。

線性搜索的代碼如下(使用版本為Python3.3):

            
'''
線性搜索子函數(shù)
'''

import numpy as np
import random

def goldsteinsearch(f,df,d,x,alpham,rho,t):

  flag=0

  a=0
  b=alpham
  fk=f(x)
  gk=df(x)

  phi0=fk
  dphi0=np.dot(gk,d)

  alpha=b*random.uniform(0,1)

  while(flag==0):
    newfk=f(x+alpha*d)
    phi=newfk
    if(phi-phi0<=rho*alpha*dphi0):
      if(phi-phi0>=(1-rho)*alpha*dphi0):
        flag=1
      else:
        a=alpha
        b=b
        if(b
            
            
          

上述函數(shù)的輸入?yún)?shù)主要包括一個多元函數(shù)f,其導數(shù)df,當前迭代點x和當前搜索方向d,返回值是根據(jù)Goldstein準則確定的搜索步長。

我們?nèi)砸訰osenbrock函數(shù)為例,即有

于是可得函數(shù)的梯度為

最速下降法的代碼如下:

            
"""
最速下降法
Rosenbrock函數(shù)
函數(shù) f(x)=100*(x(2)-x(1).^2).^2+(1-x(1)).^2
梯度 g(x)=(-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)),200*(x(2)-x(1)^2))^(T)
"""

import numpy as np
import matplotlib.pyplot as plt
import random
import linesearch
from linesearch import goldsteinsearch

def rosenbrock(x):
  return 100*(x[1]-x[0]**2)**2+(1-x[0])**2

def jacobian(x):
  return np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]),200*(x[1]-x[0]**2)])


X1=np.arange(-1.5,1.5+0.05,0.05)
X2=np.arange(-3.5,2+0.05,0.05)
[x1,x2]=np.meshgrid(X1,X2)
f=100*(x2-x1**2)**2+(1-x1)**2; # 給定的函數(shù)
plt.contour(x1,x2,f,20) # 畫出函數(shù)的20條輪廓線

def steepest(x0):

  print('初始點為:')
  print(x0,'\n')  
  imax = 20000
  W=np.zeros((2,imax))
  W[:,0] = x0
  i = 1   
  x = x0
  grad = jacobian(x)
  delta = sum(grad**2) # 初始誤差


  while i
            
              10**(-5):
    p = -jacobian(x)
    x0=x
    alpha = goldsteinsearch(rosenbrock,jacobian,p,x,1,0.1,2)
    x = x + alpha*p
    W[:,i] = x
    grad = jacobian(x)
    delta = sum(grad**2)
    i=i+1

  print("迭代次數(shù)為:",i)
  print("近似最優(yōu)解為:")
  print(x,'\n')  
  W=W[:,0:i] # 記錄迭代點
  return W

x0 = np.array([-1.2,1])
W=steepest(x0)

plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 畫出迭代點收斂的軌跡
plt.show()
            
          

為了實現(xiàn)不同文件中函數(shù)的調(diào)用,我們先用import函數(shù)導入了線性搜索的子函數(shù),也就是下面的2行代碼

            
import linesearch
from linesearch import goldsteinsearch
          

當然,如果把定義goldsteinsearch函數(shù)的代碼直接放到程序里面,就不需要這么麻煩了,但是那樣的話,不僅會使程序顯得很長,而且不便于goldsteinsearch函數(shù)的重用。

此外,Python對函數(shù)式編程也支持的很好,在定義goldsteinsearch函數(shù)時,可以允許抽象的函數(shù)f,df作為其輸入?yún)?shù),只要在調(diào)用時實例化就可以了。與Matlab不同的是,傳遞函數(shù)作為參數(shù)時,Python是不需要使用@將其變?yōu)楹瘮?shù)句柄的。

運行結(jié)果為

            
初始點為:

[-1.2 1. ] 

迭代次數(shù)為: 1504

近似最優(yōu)解為:

[ 1.00318532 1.00639618]

迭代點的軌跡為 

          

用Python實現(xiàn)最速下降法求極值的方法_第1張圖片

由于在線性搜索子程序中使用了隨機函數(shù),初始搜索點是隨機產(chǎn)生的,因此每次運行的結(jié)果不太相同,比如再運行一次程序,得到

            
初始點為:
[-1.2 1. ] 

迭代次數(shù)為: 1994

近似最優(yōu)解為:
[ 0.99735222 0.99469882] 

          

所得圖像為

用Python實現(xiàn)最速下降法求極值的方法_第2張圖片

以上這篇用Python實現(xiàn)最速下降法求極值的方法就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。


更多文章、技術交流、商務合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論