八大排序算法的Python實(shí)現(xiàn)?
原文地址
?
插入排序
插入排序的基本操作就是將一個(gè)數(shù)據(jù)插入到已經(jīng)排好序的有序數(shù)據(jù)中,從而得到一個(gè)新的、個(gè)數(shù)加一的有序數(shù)據(jù),算法適用于少量數(shù)據(jù)的排序,時(shí)間復(fù)雜度為O(n^2)。是穩(wěn)定的排序方法。插入算法把要排序的數(shù)組分成兩部分:第一部分包含了這個(gè)數(shù)組的所有元素,但將最后一個(gè)元素除外
(讓數(shù)組多一個(gè)空間才有插入的位置),而第二部分就只包含這一個(gè)元素(即待插入元素)。在第一部分排序完成后,再將這個(gè)最后元素插入到已排好序的第一部分中。
代碼實(shí)現(xiàn):
def insert_sort(lists): # 插入排序 count = len(lists) for i in range(1 , count): key = lists[i] j = i - 1 while j >= 0: if lists[j] > key: lists[j + 1] = lists[j] lists[j] = key j -= 1 return lists
?
希爾排序
希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序算法的一種更高效的改進(jìn)版本。希爾排序是非穩(wěn)定排序算法。該方法因DL.Shell于1959年提出而得名。希爾排序是把記錄按下標(biāo)的一定增量分組,對(duì)每組使用直接插入排序算法排序;隨著增量逐漸減少,
每組包含的關(guān)鍵詞越來越多,當(dāng)增量減至1時(shí),整個(gè)文件恰被分成一組,算法便終止。
代碼實(shí)現(xiàn):
def shell_sort(lists): # 希爾排序 count = len(lists) step = 2 group = count / step while group > 0: for i in range(0, group): j = i + group while j < count: k = j - group key = lists[j] while k >= 0: if lists[k] > key: lists[k + group] = lists[k] lists[k] = key k -= group j += group group /= step return lists
冒泡排序
它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果他們的順序錯(cuò)誤就把他們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。
代碼實(shí)現(xiàn):
def bubble_sort(lists): # 冒泡排序 count = len(lists) for i in range(0, count): for j in range(i + 1 , count): if lists[i] > lists[j]: lists[i], lists[j] = lists[j], lists[i] return lists
?
?
快速排序
通過一趟排序?qū)⒁判虻臄?shù)據(jù)分割成獨(dú)立的兩部分,其中一部分的所有數(shù)據(jù)都比另外一部分的所有數(shù)據(jù)都要小,然后再按此方法對(duì)這兩部分?jǐn)?shù)據(jù)分別進(jìn)行快速排序,整個(gè)排序過程可以遞歸進(jìn)行,以此達(dá)到整個(gè)數(shù)據(jù)變成有序序列。
代碼實(shí)現(xiàn):
def quick_sort(lists, left, right): # 快速排序 if left >= right: return lists key = lists[left] low = left high = right while left < right: while left < right and lists[right] >= key: right -= 1 lists[left] = lists[right] while left < right and lists[left] <= key: left += 1 lists[right] = lists[left] lists[right] = key quick_sort(lists, low, left - 1 ) quick_sort(lists, left + 1 , high) return lists
?
直接選擇排序
基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長(zhǎng)直到全部排序完畢。
代碼實(shí)現(xiàn):
def select_sort(lists): # 選擇排序 count = len(lists) for i in range(0, count): min = i for j in range(i + 1 , count): if lists[min] > lists[j]: min = j lists[min], lists[i] = lists[i], lists[min] return lists
?
堆排序
堆排序(Heapsort)是指利用堆積樹(堆)這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法,它是選擇排序的一種。可以利用數(shù)組的特點(diǎn)快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個(gè)節(jié)點(diǎn)的值都不大于其父節(jié)點(diǎn)的值,即A[PARENT[i]] >= A[i]。在數(shù)組的非降序排序中,需要使用的就是大根堆,因?yàn)楦鶕?jù)大根堆的要求可知,最大的值一定在堆頂。
代碼實(shí)現(xiàn):
# 調(diào)整堆 def adjust_heap(lists, i, size): lchild = 2 * i + 1 rchild = 2 * i + 2 max = i if i < size / 2 : if lchild < size and lists[lchild] > lists[max]: max = lchild if rchild < size and lists[rchild] > lists[max]: max = rchild if max != i: lists[max], lists[i] = lists[i], lists[max] adjust_heap(lists, max, size) # 創(chuàng)建堆 def build_heap(lists, size): for i in range(0, (size/2))[::-1 ]: adjust_heap(lists, i, size) # 堆排序 def heap_sort(lists): size = len(lists) build_heap(lists, size) for i in range(0, size)[::-1 ]: lists[0], lists[i] = lists[i], lists[0] adjust_heap(lists, 0, i)
?
歸并排序
歸并排序是建立在歸并操作上的一種有效的排序算法,該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。將已有序的子序列合并,得到完全有序的序列;即先使每個(gè)子序列有序,再使子序列段間有序。若將兩個(gè)有序表合并成一個(gè)有序表,稱為二路歸并。 歸并過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個(gè)有序表中的元素a[i]復(fù)制到r[k]中,并令i和k分別加上1;否則將第二個(gè)有序表中的元素a[j]復(fù)制到r[k]中,并令j和k分別加上1,如此循環(huán)下去,直到其中一個(gè)有序表取完,然后再將另一個(gè)有序表中剩余的元素復(fù)制到r中從下標(biāo)k到下標(biāo)t的單元。歸并排序的算法我們通常用遞歸實(shí)現(xiàn),先把待排序區(qū)間[s,t]以中點(diǎn)二分,接著把左邊子區(qū)間排序,再把右邊子區(qū)間排序,最后把左區(qū)間和右區(qū)間用一次歸并操作合并成有序的區(qū)間[s,t]。
代碼實(shí)現(xiàn):
def merge(left, right): i, j = 0, 0 result = [] while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else : result.append(right[j]) j += 1 result += left[i:] result += right[j:] return result def merge_sort(lists): # 歸并排序 if len(lists) <= 1 : return lists num = len(lists) / 2 left = merge_sort(lists[:num]) right = merge_sort(lists[num:]) return merge(left, right)
?
基數(shù)排序
基數(shù)排序(radix sort)屬于“分配式排序”(distribution sort),又稱“桶子法”(bucket sort)或bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配至某些“桶”中,藉以達(dá)到排序的作用,基數(shù)排序法是屬于穩(wěn)定性的排序,其時(shí)間復(fù)雜度為O (nlog(r)m),其中r為所采取的基數(shù),而m為堆數(shù),在某些時(shí)候,基數(shù)排序法的效率高于其它的穩(wěn)定性排序法。
代碼實(shí)現(xiàn):
import math def radix_sort(lists, radix=10 ): k = int(math.ceil(math.log(max(lists), radix))) bucket = [[] for i in range(radix)] for i in range(1, k+1 ): for j in lists: bucket[j /(radix**(i-1)) % (radix** i)].append(j) del lists[:] for z in bucket: lists += z del z[:] return lists
?
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
