黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

python按比例隨機切分數據的實現

系統 2900 0

在機器學習或者深度學習中,我們常常碰到一個問題是數據集的切分。比如在一個比賽中,舉辦方給我們的只是一個帶標注的訓練集和不帶標注的測試集。其中訓練集是用于訓練,而測試集用于已訓練模型上跑出一個結果,然后提交,然后舉辦方驗證結果給出一個分數。但是我們在訓練過程中,可能會出現過擬合等問題,會面臨著算法和模型的選擇,此時,驗證集就顯得很重要。通常,如果數據量充足,我們會從訓練集中劃分出一定比例的數據來作為驗證集。

每次劃分數據集都手動寫一個腳本,重復性太高,因此將此簡單的腳本放到自己的博客。代碼如下:

            
import random

def split(full_list,shuffle=False,ratio=0.2):
  n_total = len(full_list)
  offset = int(n_total * ratio)
  if n_total==0 or offset<1:
    return [],full_list
  if shuffle:
    random.shuffle(full_list)
  sublist_1 = full_list[:offset]
  sublist_2 = full_list[offset:]
  return sublist_1,sublist_2


if __name__ == "__main__":
  li = range(5)
  sublist_1,sublist_2 = split(li,shuffle=True,ratio=0.2)

  print sublist_1,len(sublist_1)
  print sublist_2,len(sublist_2)


          

其中,main為測試代碼。假如訓練集給出的是一個文件,我們先將文件讀到列表中,然后再調用split。

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論