欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

python

系統 1900 0

MinMaxScaler.fit_transform()

            
              Init signature: MinMaxScaler(feature_range=(0, 1), copy=True)
Docstring:     
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such
that it is in the given range on the training set, e.g. between
zero and one.

The transformation is given by::

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min

where min, max = feature_range.

The transformation is calculated as::

    X_scaled = scale * X + min - X.min(axis=0) * scale
    where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))

This transformation is often used as an alternative to zero mean,
unit variance scaling.

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
feature_range : tuple (min, max), default=(0, 1)
    Desired range of transformed data.

copy : boolean, optional, default True
    Set to False to perform inplace row normalization and avoid a
    copy (if the input is already a numpy array).

Attributes
----------
min_ : ndarray, shape (n_features,)
    Per feature adjustment for minimum. Equivalent to
    ``min - X.min(axis=0) * self.scale_``

scale_ : ndarray, shape (n_features,)
    Per feature relative scaling of the data. Equivalent to
    ``(max - min) / (X.max(axis=0) - X.min(axis=0))``

    .. versionadded:: 0.17
       *scale_* attribute.

data_min_ : ndarray, shape (n_features,)
    Per feature minimum seen in the data

    .. versionadded:: 0.17
       *data_min_*

data_max_ : ndarray, shape (n_features,)
    Per feature maximum seen in the data

    .. versionadded:: 0.17
       *data_max_*

data_range_ : ndarray, shape (n_features,)
    Per feature range ``(data_max_ - data_min_)`` seen in the data

    .. versionadded:: 0.17
       *data_range_*

Examples
--------
>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler(copy=True, feature_range=(0, 1))
>>> print(scaler.data_max_)
[ 1. 18.]
>>> print(scaler.transform(data))
[[0.   0.  ]
 [0.25 0.25]
 [0.5  0.5 ]
 [1.   1.  ]]
>>> print(scaler.transform([[2, 2]]))
[[1.5 0. ]]

See also
--------
minmax_scale: Equivalent function without the estimator API.

Notes
-----
NaNs are treated as missing values: disregarded in fit, and maintained in
transform.

For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

參考文章: 有關StandardScaler的transform和fit_transform方法
https://www.jianshu.com/p/2a635d9e894d


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: av网址在线播放 | √天堂在线 | 久久人人做 | 成人在线免费视频观看 | 99久久99| 国产一级精品高清一级毛片 | 国产免费叼嘿在线观看 | 国产精品一区av | 久久99在线 | 欧美成人精品一区二区男人看 | 日韩骚片 | 国产精品1区2区 | 欧美精品人爱a欧美精品 | 欧美日韩一区二区三 | 欧美三区在线观看 | 国产精品麻豆视频 | 久久亚洲精品国产精品黑人 | 91精品观看91久久久久久 | 综合久久久久 | 精品久久洲久久久久护士免费 | 亚洲一区和二区 | 日本亚洲国产精品久久 | 欧美第四页 | 亚洲美女精品 | 日日夜夜拍拍 | 亚洲乱码视频在线观看 | 日本精品久久久久久久 | 日韩精品一区二区在线 | 一区二区三区日 | 亚洲国产综合久久精品 | 成人性视频免费网站 | 久热国产在线视频 | 国产精品一区二555 欧美在线免费 | 看免费的毛片 | 九九色综合 | 亚洲欧美日韩中文综合在线不卡 | 亚洲综合国产一区二区三区 | 亚洲欧美精品综合中文字幕 | 色情综合色情播五月 | 成人欧美日韩一区二区三区 | a免费国产一级特黄aa大 |