欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

Spark學習實例(Python):RDD執行 Actions

系統 1647 0

上面我們學習了RDD如何轉換,即一個RDD轉換成另外一個RDD,但是轉換完成之后并沒有立刻執行,僅僅是記住了數據集的邏輯操作,只有當執行了Action動作之后才會真正觸發Spark作業,進行算子的計算

執行操作有:

  • reduce(func)
  • collect()
  • count()
  • first()
  • take(n)
  • takeSample(withReplacement, num, [seed])
  • takeOrdered(n, [ordering])
  • saveAsTextFile(path)
  • countByKey()
  • foreach(func)

reduce:使用函數func聚合數據集元素,返回執行結果

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.reduce(lambda x,y : x+y))
    # 15
    sc.stop()
            
          

collect:將計算結果回收到Driver端,當數據量較大時執行會造成oom

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.collect())
    # [1, 2, 3, 4, 5]
    sc.stop()
            
          

count:返回數據集元素個數,執行過程中會將數據回收到Driver端進行統計

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.count())
    # 5
    sc.stop()
            
          

first:返回數據集中的第一個元素,類似于take(1)

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.first())
    # 1
    sc.stop()
            
          

take:返回數據集中的前n個元素的數組

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.take(3))
    # [1, 2, 3]
    sc.stop()
            
          

takeSample:返回數據集中num個隨機元素,seed指定隨機數生成器種子

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.takeSample(True, 3, 1314))
    # [5, 2, 3]
    sc.stop()
            
          

takeOrdered:使用自然排序或自定義比較器返回數據集中的前n個元素

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [5, 1, 4, 2, 3]
    rdd = sc.parallelize(data)
    print(rdd.takeOrdered(3))
    # [1, 2, 3]
    print(rdd.takeOrdered(3, key=lambda x: -x))
    # [5, 4, 3]
    sc.stop()
            
          

saveAsTextFile:將數據集元素作為文本文件寫入文件系統(如:本地文件系統,HDFS等)

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    rdd.saveAsTextFile("file:///home/data")
    sc.stop()
            
          

countByKey:統計(K,V)對中每個K的個數

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [('a', 1), ('b', 2), ('a', 3)]
    rdd = sc.parallelize(data)
    print(sorted(rdd.countByKey().items()))
    # [('a', 2), ('b', 1)]
    sc.stop()
            
          

foreach:對RDD每個元素執行指定函數

            
              from pyspark import SparkContext

def f(x):
    print(x)

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3]
    rdd = sc.parallelize(data)
    rdd.foreach(f)
    # 1 2 3
    sc.stop()
            
          

至此,所有action動作學習完畢

?

Spark學習目錄:

  • Spark學習實例1(Python):單詞統計 Word Count
  • Spark學習實例2(Python):加載數據源Load Data Source
  • Spark學習實例3(Python):保存數據Save Data
  • Spark學習實例4(Python):RDD轉換 Transformations
  • Spark學習實例5(Python):RDD執行 Actions
  • Spark學習實例6(Python):共享變量Shared Variables
  • Spark學習實例7(Python):RDD、DataFrame、DataSet相互轉換
  • Spark學習實例8(Python):輸入源實時處理 Input Sources Streaming
  • Spark學習實例9(Python):窗口操作 Window Operations

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 精品天堂 | 国产精品日本一区二区在线播放 | 久久www免费人成看片色多多 | 青娱乐在线视频盛宴 | 日日摸夜夜添夜夜添亚洲女人 | 日本黄视频在线观看 | 一级特黄女人生活片 | 毛片91 | 男女生性毛片免费观看 | 一区二区三区视频 | 男人天堂av网站 | 一区二区在线看 | 午夜免费 | 丁香5月婷婷 | 天天操中文字幕 | 麻豆视频秘密入口 | 色秀视频在线观看全部 | 欧美精品1区 | 久久精品国产清自在天天线 | 偷偷狠狠的日日高清完整视频 | seku.tv| 久久精品国产免费中文 | 亚洲黄色色图 | 久久99精品久久久久久 | 高清国产福利 | 国产亚洲一区二区三区在线观看 | 欧美无乱码久久久免费午夜一区 | 欧美大片一区二区 | 国产午夜一区二区在线观看 | 太平公主一级艳史播放高清 | 国产精品在线观看 | 久久久高清免费视频 | 日韩 欧美 亚洲国产 | 成人特级毛片 | 四虎影院新地址 | 欧区一欧区二欧区三史无前例 | 国产黄色三级 | 午夜午夜精品一区二区三区文 | 男女下面一进一出无遮挡着 | 男人的天堂av2017在线 | 亚洲欧美激情另类 |