算法思想來自于網(wǎng)上資源,先使用圖像邊緣和車牌顏色定位車牌,再識別字符。車牌定位在predict方法中,為說明清楚,完成代碼和測試后,加了很多注釋,請參看源碼。車牌字符識別也在predict方法中,請參看源碼中的注釋,需要說明的是,車牌字符識別使用的算法是opencv的SVM, opencv的SVM使用代碼來自于opencv附帶的sample,StatModel類和SVM類都是sample中的代碼。SVM訓(xùn)練使用的訓(xùn)練樣本來自于github上的EasyPR的c++版本。由于訓(xùn)練樣本有限,你測試時會發(fā)現(xiàn),車牌字符識別,可能存在誤差,尤其是第一個中文字符出現(xiàn)的誤差概率較大。源碼中,我上傳了EasyPR中的訓(xùn)練樣本,在train\目錄下,如果要重新訓(xùn)練請解壓在當(dāng)前目錄下,并刪除原始訓(xùn)練數(shù)據(jù)文件svm.dat和svmchinese.dat。
開發(fā)工具pycharm2018? Python3.6 openCV3.4.3
surface.py界面文件代碼如下
import tkinter as tk from tkinter.filedialog import * from tkinter import ttk import predict import cv2 from PIL import Image, ImageTk import threading import time class Surface(ttk.Frame): pic_path = "" viewhigh = 600 viewwide = 600 update_time = 0 thread = None thread_run = False camera = None color_transform = {"green":("綠牌","#55FF55"), "yello":("黃牌","#FFFF00"), "blue":("藍(lán)牌","#6666FF")} def __init__(self, win): ttk.Frame.__init__(self, win) frame_left = ttk.Frame(self) frame_right1 = ttk.Frame(self) frame_right2 = ttk.Frame(self) win.title("車牌識別") win.state("zoomed") self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5") frame_left.pack(side=LEFT,expand=1,fill=BOTH) frame_right1.pack(side=TOP,expand=1,fill=tk.Y) frame_right2.pack(side=RIGHT,expand=0) ttk.Label(frame_left, text='原圖:').pack(anchor="nw") ttk.Label(frame_right1, text='車牌位置:').grid(column=0, row=0, sticky=tk.W) from_pic_ctl = ttk.Button(frame_right2, text="來自圖片", width=20, command=self.from_pic) from_vedio_ctl = ttk.Button(frame_right2, text="來自攝像頭", width=20, command=self.from_vedio) self.image_ctl = ttk.Label(frame_left) self.image_ctl.pack(anchor="nw") self.roi_ctl = ttk.Label(frame_right1) self.roi_ctl.grid(column=0, row=1, sticky=tk.W) ttk.Label(frame_right1, text='識別結(jié)果:').grid(column=0, row=2, sticky=tk.W) self.r_ctl = ttk.Label(frame_right1, text="") self.r_ctl.grid(column=0, row=3, sticky=tk.W) self.color_ctl = ttk.Label(frame_right1, text="", width="20") self.color_ctl.grid(column=0, row=4, sticky=tk.W) from_vedio_ctl.pack(anchor="se", pady="5") from_pic_ctl.pack(anchor="se", pady="5") self.predictor = predict.CardPredictor() self.predictor.train_svm() def get_imgtk(self, img_bgr): img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) im = Image.fromarray(img) imgtk = ImageTk.PhotoImage(image=im) wide = imgtk.width() high = imgtk.height() if wide > self.viewwide or high > self.viewhigh: wide_factor = self.viewwide / wide high_factor = self.viewhigh / high factor = min(wide_factor, high_factor) wide = int(wide * factor) if wide <= 0 : wide = 1 high = int(high * factor) if high <= 0 : high = 1 im=im.resize((wide, high), Image.ANTIALIAS) imgtk = ImageTk.PhotoImage(image=im) return imgtk def show_roi(self, r, roi, color): if r : roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) roi = Image.fromarray(roi) self.imgtk_roi = ImageTk.PhotoImage(image=roi) self.roi_ctl.configure(image=self.imgtk_roi, state='enable') self.r_ctl.configure(text=str(r)) self.update_time = time.time() try: c = self.color_transform[color] self.color_ctl.configure(text=c[0], background=c[1], state='enable') except: self.color_ctl.configure(state='disabled') elif self.update_time + 8 < time.time(): self.roi_ctl.configure(state='disabled') self.r_ctl.configure(text="") self.color_ctl.configure(state='disabled') def from_vedio(self): if self.thread_run: return if self.camera is None: self.camera = cv2.VideoCapture(0) if not self.camera.isOpened(): mBox.showwarning('警告', '攝像頭打開失敗!') self.camera = None return self.thread = threading.Thread(target=self.vedio_thread, args=(self,)) self.thread.setDaemon(True) self.thread.start() self.thread_run = True def from_pic(self): self.thread_run = False self.pic_path = askopenfilename(title="選擇識別圖片", filetypes=[("jpg圖片", "*.jpg")]) if self.pic_path: img_bgr = predict.imreadex(self.pic_path) self.imgtk = self.get_imgtk(img_bgr) self.image_ctl.configure(image=self.imgtk) r, roi, color = self.predictor.predict(img_bgr) self.show_roi(r, roi, color) @staticmethod def vedio_thread(self): self.thread_run = True predict_time = time.time() while self.thread_run: _, img_bgr = self.camera.read() self.imgtk = self.get_imgtk(img_bgr) self.image_ctl.configure(image=self.imgtk) if time.time() - predict_time > 2: r, roi, color = self.predictor.predict(img_bgr) self.show_roi(r, roi, color) predict_time = time.time() print("run end") def close_window(): print("destroy") if surface.thread_run : surface.thread_run = False surface.thread.join(2.0) win.destroy() if __name__ == '__main__': win=tk.Tk() surface = Surface(win) win.protocol('WM_DELETE_WINDOW', close_window) win.mainloop()
算法文件predict.py
import cv2 import numpy as np from numpy.linalg import norm import sys import os import json SZ = 20 #訓(xùn)練圖片長寬 MAX_WIDTH = 1000 #原始圖片最大寬度 Min_Area = 2000 #車牌區(qū)域允許最大面積 PROVINCE_START = 1000 #讀取圖片文件 def imreadex(filename): return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR) def point_limit(point): if point[0] < 0: point[0] = 0 if point[1] < 0: point[1] = 0 #根據(jù)設(shè)定的閾值和圖片直方圖,找出波峰,用于分隔字符 def find_waves(threshold, histogram): up_point = -1#上升點(diǎn) is_peak = False if histogram[0] > threshold: up_point = 0 is_peak = True wave_peaks = [] for i,x in enumerate(histogram): if is_peak and x < threshold: if i - up_point > 2: is_peak = False wave_peaks.append((up_point, i)) elif not is_peak and x >= threshold: is_peak = True up_point = i if is_peak and up_point != -1 and i - up_point > 4: wave_peaks.append((up_point, i)) return wave_peaks #根據(jù)找出的波峰,分隔圖片,從而得到逐個字符圖片 def seperate_card(img, waves): part_cards = [] for wave in waves: part_cards.append(img[:, wave[0]:wave[1]]) return part_cards #來自opencv的sample,用于svm訓(xùn)練 def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img #來自opencv的sample,用于svm訓(xùn)練 def preprocess_hog(digits): samples = [] for img in digits: gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bin_n = 16 bin = np.int32(bin_n*ang/(2*np.pi)) bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:] mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # transform to Hellinger kernel eps = 1e-7 hist /= hist.sum() + eps hist = np.sqrt(hist) hist /= norm(hist) + eps samples.append(hist) return np.float32(samples) #不能保證包括所有省份 provinces = [ "zh_cuan", "川", "zh_e", "鄂", "zh_gan", "贛", "zh_gan1", "甘", "zh_gui", "貴", "zh_gui1", "桂", "zh_hei", "黑", "zh_hu", "滬", "zh_ji", "冀", "zh_jin", "津", "zh_jing", "京", "zh_jl", "吉", "zh_liao", "遼", "zh_lu", "魯", "zh_meng", "蒙", "zh_min", "閩", "zh_ning", "寧", "zh_qing", "靑", "zh_qiong", "瓊", "zh_shan", "陜", "zh_su", "蘇", "zh_sx", "晉", "zh_wan", "皖", "zh_xiang", "湘", "zh_xin", "新", "zh_yu", "豫", "zh_yu1", "渝", "zh_yue", "粵", "zh_yun", "云", "zh_zang", "藏", "zh_zhe", "浙" ] class StatModel(object): def load(self, fn): self.model = self.model.load(fn) def save(self, fn): self.model.save(fn) class SVM(StatModel): def __init__(self, C = 1, gamma = 0.5): self.model = cv2.ml.SVM_create() self.model.setGamma(gamma) self.model.setC(C) self.model.setKernel(cv2.ml.SVM_RBF) self.model.setType(cv2.ml.SVM_C_SVC) #訓(xùn)練svm def train(self, samples, responses): self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) #字符識別 def predict(self, samples): r = self.model.predict(samples) return r[1].ravel() class CardPredictor: def __init__(self): #車牌識別的部分參數(shù)保存在js中,便于根據(jù)圖片分辨率做調(diào)整 f = open('config.js') j = json.load(f) for c in j["config"]: if c["open"]: self.cfg = c.copy() break else: raise RuntimeError('沒有設(shè)置有效配置參數(shù)') def __del__(self): self.save_traindata() def train_svm(self): #識別英文字母和數(shù)字 self.model = SVM(C=1, gamma=0.5) #識別中文 self.modelchinese = SVM(C=1, gamma=0.5) if os.path.exists("svm.dat"): self.model.load("svm.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\chars2"): if len(os.path.basename(root)) > 1: continue root_int = ord(os.path.basename(root)) for filename in files: filepath = os.path.join(root,filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) #chars_label.append(1) chars_label.append(root_int) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) #chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32) chars_label = np.array(chars_label) print(chars_train.shape) self.model.train(chars_train, chars_label) if os.path.exists("svmchinese.dat"): self.modelchinese.load("svmchinese.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\charsChinese"): if not os.path.basename(root).startswith("zh_"): continue pinyin = os.path.basename(root) index = provinces.index(pinyin) + PROVINCE_START + 1 #1是拼音對應(yīng)的漢字 for filename in files: filepath = os.path.join(root,filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) #chars_label.append(1) chars_label.append(index) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) #chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32) chars_label = np.array(chars_label) print(chars_train.shape) self.modelchinese.train(chars_train, chars_label) def save_traindata(self): if not os.path.exists("svm.dat"): self.model.save("svm.dat") if not os.path.exists("svmchinese.dat"): self.modelchinese.save("svmchinese.dat") def accurate_place(self, card_img_hsv, limit1, limit2, color): row_num, col_num = card_img_hsv.shape[:2] xl = col_num xr = 0 yh = 0 yl = row_num #col_num_limit = self.cfg["col_num_limit"] row_num_limit = self.cfg["row_num_limit"] col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5#綠色有漸變 for i in range(row_num): count = 0 for j in range(col_num): H = card_img_hsv.item(i, j, 0) S = card_img_hsv.item(i, j, 1) V = card_img_hsv.item(i, j, 2) if limit1 < H <= limit2 and 34 < S and 46 < V: count += 1 if count > col_num_limit: if yl > i: yl = i if yh < i: yh = i for j in range(col_num): count = 0 for i in range(row_num): H = card_img_hsv.item(i, j, 0) S = card_img_hsv.item(i, j, 1) V = card_img_hsv.item(i, j, 2) if limit1 < H <= limit2 and 34 < S and 46 < V: count += 1 if count > row_num - row_num_limit: if xl > j: xl = j if xr < j: xr = j return xl, xr, yh, yl def predict(self, car_pic): if type(car_pic) == type(""): img = imreadex(car_pic) else: img = car_pic pic_hight, pic_width = img.shape[:2] if pic_width > MAX_WIDTH: resize_rate = MAX_WIDTH / pic_width img = cv2.resize(img, (MAX_WIDTH, int(pic_hight*resize_rate)), interpolation=cv2.INTER_AREA) blur = self.cfg["blur"] #高斯去噪 if blur > 0: img = cv2.GaussianBlur(img, (blur, blur), 0)#圖片分辨率調(diào)整 oldimg = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #equ = cv2.equalizeHist(img) #img = np.hstack((img, equ)) #去掉圖像中不會是車牌的區(qū)域 kernel = np.ones((20, 20), np.uint8) img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0); #找到圖像邊緣 ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img_edge = cv2.Canny(img_thresh, 100, 200) #使用開運(yùn)算和閉運(yùn)算讓圖像邊緣成為一個整體 kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8) img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel) img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel) #查找圖像邊緣整體形成的矩形區(qū)域,可能有很多,車牌就在其中一個矩形區(qū)域中 try: contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) except ValueError: image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area] print('len(contours)', len(contours)) #一一排除不是車牌的矩形區(qū)域 car_contours = [] for cnt in contours: rect = cv2.minAreaRect(cnt) area_width, area_height = rect[1] if area_width < area_height: area_width, area_height = area_height, area_width wh_ratio = area_width / area_height #print(wh_ratio) #要求矩形區(qū)域長寬比在2到5.5之間,2到5.5是車牌的長寬比,其余的矩形排除 if wh_ratio > 2 and wh_ratio < 5.5: car_contours.append(rect) box = cv2.boxPoints(rect) box = np.int0(box) #oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2) #cv2.imshow("edge4", oldimg) #print(rect) print(len(car_contours)) print("精確定位") card_imgs = [] #矩形區(qū)域可能是傾斜的矩形,需要矯正,以便使用顏色定位 for rect in car_contours: if rect[2] > -1 and rect[2] < 1:#創(chuàng)造角度,使得左、高、右、低拿到正確的值 angle = 1 else: angle = rect[2] rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#擴(kuò)大范圍,避免車牌邊緣被排除 box = cv2.boxPoints(rect) heigth_point = right_point = [0, 0] left_point = low_point = [pic_width, pic_hight] for point in box: if left_point[0] > point[0]: left_point = point if low_point[1] > point[1]: low_point = point if heigth_point[1] < point[1]: heigth_point = point if right_point[0] < point[0]: right_point = point if left_point[1] <= right_point[1]:#正角度 new_right_point = [right_point[0], heigth_point[1]] pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改變 pts1 = np.float32([left_point, heigth_point, right_point]) M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight)) point_limit(new_right_point) point_limit(heigth_point) point_limit(left_point) card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])] card_imgs.append(card_img) #cv2.imshow("card", card_img) #cv2.waitKey(0) elif left_point[1] > right_point[1]:#負(fù)角度 new_left_point = [left_point[0], heigth_point[1]] pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改變 pts1 = np.float32([left_point, heigth_point, right_point]) M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight)) point_limit(right_point) point_limit(heigth_point) point_limit(new_left_point) card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])] card_imgs.append(card_img) #cv2.imshow("card", card_img) #cv2.waitKey(0) #開始使用顏色定位,排除不是車牌的矩形,目前只識別藍(lán)、綠、黃車牌 colors = [] for card_index,card_img in enumerate(card_imgs): green = yello = blue = black = white = 0 card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV) #有轉(zhuǎn)換失敗的可能,原因來自于上面矯正矩形出錯 if card_img_hsv is None: continue row_num, col_num= card_img_hsv.shape[:2] card_img_count = row_num * col_num for i in range(row_num): for j in range(col_num): H = card_img_hsv.item(i, j, 0) S = card_img_hsv.item(i, j, 1) V = card_img_hsv.item(i, j, 2) if 11 < H <= 34 and S > 34:#圖片分辨率調(diào)整 yello += 1 elif 35 < H <= 99 and S > 34:#圖片分辨率調(diào)整 green += 1 elif 99 < H <= 124 and S > 34:#圖片分辨率調(diào)整 blue += 1 if 0 < H <180 and 0 < S < 255 and 0 < V < 46: black += 1 elif 0 < H <180 and 0 < S < 43 and 221 < V < 225: white += 1 color = "no" limit1 = limit2 = 0 if yello*2 >= card_img_count: color = "yello" limit1 = 11 limit2 = 34#有的圖片有色偏偏綠 elif green*2 >= card_img_count: color = "green" limit1 = 35 limit2 = 99 elif blue*2 >= card_img_count: color = "blue" limit1 = 100 limit2 = 124#有的圖片有色偏偏紫 elif black + white >= card_img_count*0.7:#TODO color = "bw" print(color) colors.append(color) print(blue, green, yello, black, white, card_img_count) #cv2.imshow("color", card_img) #cv2.waitKey(0) if limit1 == 0: continue #以上為確定車牌顏色 #以下為根據(jù)車牌顏色再定位,縮小邊緣非車牌邊界 xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color) if yl == yh and xl == xr: continue need_accurate = False if yl >= yh: yl = 0 yh = row_num need_accurate = True if xl >= xr: xl = 0 xr = col_num need_accurate = True card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr] if need_accurate:#可能x或y方向未縮小,需要再試一次 card_img = card_imgs[card_index] card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV) xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color) if yl == yh and xl == xr: continue if yl >= yh: yl = 0 yh = row_num if xl >= xr: xl = 0 xr = col_num card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr] #以上為車牌定位 #以下為識別車牌中的字符 predict_result = [] roi = None card_color = None for i, color in enumerate(colors): if color in ("blue", "yello", "green"): card_img = card_imgs[i] gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY) #黃、綠車牌字符比背景暗、與藍(lán)車牌剛好相反,所以黃、綠車牌需要反向 if color == "green" or color == "yello": gray_img = cv2.bitwise_not(gray_img) ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #查找水平直方圖波峰 x_histogram = np.sum(gray_img, axis=1) x_min = np.min(x_histogram) x_average = np.sum(x_histogram)/x_histogram.shape[0] x_threshold = (x_min + x_average)/2 wave_peaks = find_waves(x_threshold, x_histogram) if len(wave_peaks) == 0: print("peak less 0:") continue #認(rèn)為水平方向,最大的波峰為車牌區(qū)域 wave = max(wave_peaks, key=lambda x:x[1]-x[0]) gray_img = gray_img[wave[0]:wave[1]] #查找垂直直方圖波峰 row_num, col_num= gray_img.shape[:2] #去掉車牌上下邊緣1個像素,避免白邊影響閾值判斷 gray_img = gray_img[1:row_num-1] y_histogram = np.sum(gray_img, axis=0) y_min = np.min(y_histogram) y_average = np.sum(y_histogram)/y_histogram.shape[0] y_threshold = (y_min + y_average)/5#U和0要求閾值偏小,否則U和0會被分成兩半 wave_peaks = find_waves(y_threshold, y_histogram) #for wave in wave_peaks: # cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) #車牌字符數(shù)應(yīng)大于6 if len(wave_peaks) <= 6: print("peak less 1:", len(wave_peaks)) continue wave = max(wave_peaks, key=lambda x:x[1]-x[0]) max_wave_dis = wave[1] - wave[0] #判斷是否是左側(cè)車牌邊緣 if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0: wave_peaks.pop(0) #組合分離漢字 cur_dis = 0 for i,wave in enumerate(wave_peaks): if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6: break else: cur_dis += wave[1] - wave[0] if i > 0: wave = (wave_peaks[0][0], wave_peaks[i][1]) wave_peaks = wave_peaks[i+1:] wave_peaks.insert(0, wave) #去除車牌上的分隔點(diǎn) point = wave_peaks[2] if point[1] - point[0] < max_wave_dis/3: point_img = gray_img[:,point[0]:point[1]] if np.mean(point_img) < 255/5: wave_peaks.pop(2) if len(wave_peaks) <= 6: print("peak less 2:", len(wave_peaks)) continue part_cards = seperate_card(gray_img, wave_peaks) for i, part_card in enumerate(part_cards): #可能是固定車牌的鉚釘 if np.mean(part_card) < 255/5: print("a point") continue part_card_old = part_card w = abs(part_card.shape[1] - SZ)//2 part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0]) part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA) #part_card = deskew(part_card) part_card = preprocess_hog([part_card]) if i == 0: resp = self.modelchinese.predict(part_card) charactor = provinces[int(resp[0]) - PROVINCE_START] else: resp = self.model.predict(part_card) charactor = chr(resp[0]) #判斷最后一個數(shù)是否是車牌邊緣,假設(shè)車牌邊緣被認(rèn)為是1 if charactor == "1" and i == len(part_cards)-1: if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太細(xì),認(rèn)為是邊緣 continue predict_result.append(charactor) roi = card_img card_color = color break return predict_result, roi, card_color#識別到的字符、定位的車牌圖像、車牌顏色 if __name__ == '__main__': c = CardPredictor() c.train_svm() r, roi, color = c.predict("黑A16341.jpg") print(r)
還有兩個svm.dat??svmchinese.dat?還有個js文件
運(yùn)行效果如下:
?
?
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯(lián)系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
