圖像的閾值處理一般使得圖像的像素值更單一、圖像更簡單。閾值可以分為全局性質的閾值,也可以分為局部性質的閾值,可以是單閾值的也可以是多閾值的。當然閾值越多是越復雜的。下面將介紹opencv下的三種閾值方法。
(一)簡單閾值
簡單閾值當然是最簡單,選取一個全局閾值,然后就把整幅圖像分成了非黑即白的二值圖像了。函數為cv2.threshold()
這個函數有四個參數,第一個原圖像,第二個進行分類的閾值,第三個是高于(低于)閾值時賦予的新值,第四個是一個方法選擇參數,常用的有:
- cv2.THRESH_BINARY(黑白二值)
- cv2.THRESH_BINARY_INV(黑白二值反轉)
- cv2.THRESH_TRUNC (得到的圖像為多像素值)
- cv2.THRESH_TOZERO
- cv2.THRESH_TOZERO_INV
該函數有兩個返回值,第一個retVal(得到的閾值值(在后面一個方法中會用到)),第二個就是閾值化后的圖像。
一個實例如下:
import cv2 import matplotlib.pyplot as plt img = cv2.imread('flower.jpg',0) #直接讀為灰度圖像 ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV) ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC) ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO) ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) titles = ['img','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] images = [img,thresh1,thresh2,thresh3,thresh4,thresh5] for i in range(6): plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
可以看到這里把閾值設置成了127,對于BINARY方法,當圖像中的灰度值大于127的重置像素值為255.
(二)自適應閾值:
前面看到簡單閾值是一種全局性的閾值,只需要規定一個閾值值,整個圖像都和這個閾值比較。而自適應閾值可以看成一種局部性的閾值,通過規定一個區域大小,比較這個點與區域大小里面像素點的平均值(或者其他特征)的大小關系確定這個像素點是屬于黑或者白(如果是二值情況)。使用的函數為:cv2.adaptiveThreshold()
該函數需要填6個參數:
- 第一個原始圖像
- 第二個像素值上限
-
第三個自適應方法Adaptive Method:
- ― cv2.ADAPTIVE_THRESH_MEAN_C :領域內均值
- ―cv2.ADAPTIVE_THRESH_GAUSSIAN_C :領域內像素點加權和,權 重為一個高斯窗口
- 第四個值的賦值方法:只有cv2.THRESH_BINARY 和cv2.THRESH_BINARY_INV
- 第五個Block size:規定領域大?。ㄒ粋€正方形的領域)
- 第六個常數C,閾值等于均值或者加權值減去這個常數(為0相當于閾值 就是求得領域內均值或者加權值)
這種方法理論上得到的效果更好,相當于在動態自適應的調整屬于自己像素點的閾值,而不是整幅圖像都用一個閾值。
一個實例如下:
mport cv2 import matplotlib.pyplot as plt img = cv2.imread('flower.jpg',0) #直接讀為灰度圖像 ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\ cv2.THRESH_BINARY,11,2) #換行符號 \ th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) #換行符號 \ images = [img,th1,th2,th3] plt.figure() for i in xrange(4): plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') plt.show()
可以看到上述窗口大小使用的為11,當窗口越小的時候,得到的圖像越細。想想一下,如果把窗口設置足夠大以后(不能超過圖像大?。?,那么得到的結果可能就和第二幅圖像的相同了。
(三)Otsu's二值化
我們前面說到,cv2.threshold函數是有兩個返回值的,前面一直用的第二個返回值,也就是閾值處理后的圖像,那么第一個返回值(得到圖像的閾值)將會在這里用到。
前面對于閾值的處理上,我們選擇的閾值都是127,那么實際情況下,怎么去選擇這個127呢?有的圖像可能閾值不是127得到的效果更好。那么這里我們需要算法自己去尋找到一個閾值,而Otsu's就可以自己找到一個認為最好的閾值。并且Otsu's非常適合于圖像灰度直方圖具有雙峰的情況,他會在雙峰之間找到一個值作為閾值,對于非雙峰圖像,可能并不是很好用。那么經過Otsu's得到的那個閾值就是函數cv2.threshold的第一個參數了。因為Otsu's方法會產生一個閾值,那么函數cv2.threshold的的第二個參數(設置閾值)就是0了,并且在cv2.threshold的方法參數中還得加上語句cv2.THRESH_OTSU。那么什么是雙峰圖像(只能是灰度圖像才有),就是圖像的灰度統計圖中可以明顯看出只有兩個波峰,比如下面一個圖的灰度直方圖就可以是雙峰圖:
好了現在對這個圖進行Otsu's閾值處理就非常的好,通過函數cv2.threshold會自動找到一個介于兩波峰之間的閾值。一個實例如下:
import cv2 import matplotlib.pyplot as plt img = cv2.imread('finger.jpg',0) #直接讀為灰度圖像 #簡單濾波 ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) #Otsu 濾波 ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) print ret2 plt.figure() plt.subplot(221),plt.imshow(img,'gray') plt.subplot(222),plt.hist(img.ravel(),256)#.ravel方法將矩陣轉化為一維 plt.subplot(223),plt.imshow(th1,'gray') plt.subplot(224),plt.imshow(th2,'gray')
print ret2 得到的結果為122。可以看出似乎兩個結果并沒有很明顯差別(素材也不太好弄~_~!),主要是兩個閾值(127與122)太相近了,如果這兩個隔得很遠那么會很明顯的。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
