欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

樸素貝葉斯法的參數估計——極大似然估計及其Python實現

系統 2084 0

統計學習方法——樸素貝葉斯法原理

1. 樸素貝葉斯法的極大似然估計

樸素貝葉斯法的參數估計——極大似然估計及其Python實現_第1張圖片

2. 樸素貝葉斯極大似然學習及分類算法

算法過程:
樸素貝葉斯法的參數估計——極大似然估計及其Python實現_第2張圖片

2. Python實現

            
              
                def
              
              
                priorProbability
              
              
                (
              
              labelList
              
                )
              
              
                :
              
              
                # 計算先驗概率
              
              
    labelSet 
              
                =
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                # 得到類別的值
              
              
    labelCountDict 
              
                =
              
              
                {
              
              
                }
              
              
                # 利用一個字典來存儲訓練集中各個類別的實例數
              
              
                for
              
               label 
              
                in
              
               labelList
              
                :
              
              
                if
              
               label 
              
                not
              
              
                in
              
               labelCountDict
              
                :
              
              
            labelCountDict
              
                [
              
              label
              
                ]
              
              
                =
              
              
                0
              
              
        labelCountDict
              
                [
              
              label
              
                ]
              
              
                +=
              
              
                1
              
              
    priorProbabilityDict 
              
                =
              
              
                {
              
              
                }
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
                # 計算不同的類別對應的先驗概率
              
              
        priorProbabilityDict
              
                [
              
              label
              
                ]
              
              
                =
              
               labelCountDict
              
                [
              
              label
              
                ]
              
              
                /
              
              
                len
              
              
                (
              
              labelList
              
                )
              
              
                return
              
               priorProbabilityDict

              
                def
              
              
                conditionProbability
              
              
                (
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                :
              
              
                # 計算條件概率
              
              
    dimNum 
              
                =
              
              
                len
              
              
                (
              
              dataSet
              
                [
              
              
                0
              
              
                ]
              
              
                )
              
              
                # 得到特征數
              
              
    characterVal 
              
                =
              
              
                [
              
              
                ]
              
              
                # 利用一個數組來存儲訓練數據集中不同特征的不同特征值。
              
              
                # 每一個不同特征的特征值都要需要另一個數組來存儲,這樣 characterVal實際上是一個二維數組
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              dimNum
              
                )
              
              
                :
              
              
        temp 
              
                =
              
              
                [
              
              
                ]
              
              
                for
              
               j 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              dataSet
              
                )
              
              
                )
              
              
                :
              
              
                if
              
               dataSet
              
                [
              
              j
              
                ]
              
              
                [
              
              i
              
                ]
              
              
                not
              
              
                in
              
               temp
              
                :
              
              
                temp
              
                .
              
              append
              
                (
              
              dataSet
              
                [
              
              j
              
                ]
              
              
                [
              
              i
              
                ]
              
              
                )
              
              
        characterVal
              
                .
              
              append
              
                (
              
              temp
              
                )
              
              
    probability 
              
                =
              
              
                [
              
              
                ]
              
              
                # 數組來存儲最后的所有的條件概率
              
              
    labelSet 
              
                =
              
              
                list
              
              
                (
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                for
              
               dim 
              
                in
              
              
                range
              
              
                (
              
              dimNum
              
                )
              
              
                :
              
              
                # 學習條件概率,需要計算K*S1*...*Sj個概率
              
              
        tempMemories 
              
                =
              
              
                {
              
              
                }
              
              
                # 對于每一個特征,利用一個字點來存儲這個特征所有的取值對應的條件概率
              
              
                for
              
               val 
              
                in
              
               characterVal
              
                [
              
              dim
              
                ]
              
              
                :
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
                labelCount 
              
                =
              
              
                0
              
              
                # 記錄每一類的個數
              
              
                mixCount 
              
                =
              
              
                0
              
              
                # 記錄當前特征值為這個數,且類別為這個類別的實例個數
              
              
                for
              
               i 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                :
              
              
                if
              
               labelList
              
                [
              
              i
              
                ]
              
              
                ==
              
               label
              
                :
              
              
                        labelCount 
              
                +=
              
              
                1
              
              
                if
              
               dataSet
              
                [
              
              i
              
                ]
              
              
                [
              
              dim
              
                ]
              
              
                ==
              
               val
              
                :
              
              
                            mixCount 
              
                +=
              
              
                1
              
              
                tempMemories
              
                [
              
              
                str
              
              
                (
              
              val
              
                )
              
              
                +
              
              
                "|"
              
              
                +
              
              
                str
              
              
                (
              
              label
              
                )
              
              
                ]
              
              
                =
              
               mixCount
              
                /
              
              labelCount
                
              
                # key表示哪一個特征值和類別,鍵表示對應的條件概率
              
              
        probability
              
                .
              
              append
              
                (
              
              tempMemories
              
                )
              
              
                # 計算完一個特征,填充一個
              
              
                return
              
               probability  
              
                # 返回條件概率
              
              
                def
              
              
                naiveBayes
              
              
                (
              
              x
              
                ,
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                :
              
              
                # 貝葉斯分類
              
              
    priorProbabilityDict 
              
                =
              
               priorProbability
              
                (
              
              labelList
              
                )
              
              
    probability 
              
                =
              
               conditionProbability
              
                (
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
    bayesProbability 
              
                =
              
              
                {
              
              
                }
              
              
                # 計算所有類所對應的后驗概率
              
              
    labelSet 
              
                =
              
              
                list
              
              
                (
              
              
                set
              
              
                (
              
              labelList
              
                )
              
              
                )
              
              
                for
              
               label 
              
                in
              
               labelSet
              
                :
              
              
        tempProb 
              
                =
              
               priorProbabilityDict
              
                [
              
              label
              
                ]
              
              
                for
              
               dim 
              
                in
              
              
                range
              
              
                (
              
              
                len
              
              
                (
              
              x
              
                )
              
              
                )
              
              
                :
              
              
            tempProb 
              
                *=
              
               probability
              
                [
              
              dim
              
                ]
              
              
                [
              
              
                str
              
              
                (
              
              x
              
                [
              
              dim
              
                ]
              
              
                )
              
              
                +
              
              
                "|"
              
              
                +
              
              
                str
              
              
                (
              
              label
              
                )
              
              
                ]
              
              
        bayesProbability
              
                [
              
              label
              
                ]
              
              
                =
              
               tempProb
    result 
              
                =
              
              
                sorted
              
              
                (
              
              bayesProbability
              
                .
              
              items
              
                (
              
              
                )
              
              
                ,
              
              key
              
                =
              
              
                lambda
              
               x
              
                :
              
              x
              
                [
              
              
                1
              
              
                ]
              
              
                ,
              
              reverse
              
                =
              
              
                True
              
              
                )
              
              
                # 排序
              
              
                return
              
               result
              
                [
              
              
                0
              
              
                ]
              
              
                [
              
              
                0
              
              
                ]
              
              
                # 返回后驗概率最大的類
              
              
dataSet 
              
                =
              
              
                (
              
              
                [
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                1
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                2
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "m"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ,
              
              
                [
              
              
                3
              
              
                ,
              
              
                "l"
              
              
                ]
              
              
                ]
              
              
                )
              
              
labelList 
              
                =
              
              
                [
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                1
              
              
                ,
              
              
                -
              
              
                1
              
              
                ]
              
              
                print
              
              
                (
              
              naiveBayes
              
                (
              
              
                [
              
              
                2
              
              
                ,
              
              
                "s"
              
              
                ]
              
              
                ,
              
              dataSet
              
                ,
              
              labelList
              
                )
              
              
                )
              
              
                ## 返回結果為-1,即歸為-1類。
              
            
          
這個實現過程和書上的不太一樣,這里每一個特征的取值范圍和類的取值范圍是根據數據集中的數來進行確定,即每一個特征的取值范圍不考慮那些沒有出現在訓練數據集中的特征值。而書上的算法,每一個特征的取值范圍是事先給出的,在這個取值范圍中的特征值,可能會出現在訓練數據集中,可能不出現。但在估計先驗概率和條件概率的時候,過程是一樣的。這是這個實現過程的一個不足。

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 天天影视色香欲综合网老头 | 日本一本久道 | 在线观看亚洲一区 | 国产视频一区二区在线观看 | 好看的中文字幕在线 | 一级黄色大毛片 | 色综合五月色婷婷开心 | 日韩中文一区二区三区 | 久久亚洲一区二区 | 欧美另类色 | 欧美aⅴ | 亚洲视频在线网 | 欧美一区二区免费电影 | 日本精品一区二区三区在线 | 亚洲精品AV无码喷奶水糖心 | 香港三级大全 | 国产成人综合一区二区三区 | 日韩毛片高清免费 | 亚洲综合色站 | 日日摸夜夜添夜夜添aa | 免费观看成人毛片A片2008 | 欧美日韩中文国产一区发布 | 老头天天吃我奶躁我午夜视频 | 中文字幕在线观看 | 国产精品亲子伦av一区二区三区 | 欧美日韩一区二区高清视 | 中文字幕精品一区二区三区精品 | 91华人在线视频 | 欧美激情 亚洲 | 亚洲欧美成人综合在线 | 欧美日韩精品一区二区在线播放 | 欧美精彩视频 | 双凤奇案 | 亚洲激情一区 | 毛片免费在线 | 日本久久久久 | 91懂色| α片毛片 | 九一国产在线观看免费 | 国产高清在线精品一区二区三区 | 国内成人啪啪网站 |