Python中滑動平均算法(Moving Average)方案:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
# 等同于MATLAB中的smooth函數,但是平滑窗口必須為奇數。
# yy = smooth(y) smooths the data in the column vector y ..
# The first few elements of yy are given by
# yy(1) = y(1)
# yy(2) = (y(1) + y(2) + y(3))/3
# yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
# yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
# ...
def smooth(a,WSZ):
# a:原始數據,NumPy 1-D array containing the data to be smoothed
# 必須是1-D的,如果不是,請使用 np.ravel()或者np.squeeze()轉化
# WSZ: smoothing window size needs, which must be odd number,
# as in the original MATLAB implementation
out0 = np.convolve(a,np.ones(WSZ,dtype=int),'valid')/WSZ
r = np.arange(1,WSZ-1,2)
start = np.cumsum(a[:WSZ-1])[::2]/r
stop = (np.cumsum(a[:-WSZ:-1])[::2]/r)[::-1]
return np.concatenate(( start , out0, stop ))
# another one,邊緣處理的不好
"""
def movingaverage(data, window_size):
window = np.ones(int(window_size))/float(window_size)
return np.convolve(data, window, 'same')
"""
# another one,速度更快
# 輸出結果 不與原始數據等長,假設原數據為m,平滑步長為t,則輸出數據為m-t+1
"""
def movingaverage(data, window_size):
cumsum_vec = np.cumsum(np.insert(data, 0, 0))
ma_vec = (cumsum_vec[window_size:] - cumsum_vec[:-window_size]) / window_size
return ma_vec
"""
以上這篇Python實現滑動平均(Moving Average)的例子就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061
微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元

