圖像顯示和打印面臨的一個問題是:圖像的亮度和對比度能否充分突出關鍵部分。這里所指的“關鍵部分”在 CT 里的例子有軟組織、骨頭、腦組織、肺、腹部等等。
技術問題
1、顯示器往往只有 8-bit, 而數據有 12- 至 16-bits。
2、如果將數據的 min 和 max 間 (dynamic range) 的之間轉換到 8-bit 0-255 去,過程是個有損轉換, 而且出來的圖像往往突出的是些噪音。
算法分析
12-bit 到 8-bit 直接轉換:
computeMinMax(pixel_val, min, max); // 先算圖像的最大和最小值 for (i = 0; i < nNumPixels; i++) disp_pixel_val[i] = (pixel_val[i] - min)*255.0/(double)(max-min);
這個算法必須有,對不少種類的圖像是很有效的:如 8-bit 圖像,MRI, ECT, CR 等等。
python實現
def matrix2uint8(matrix): ''' matrix must be a numpy array NXN Returns uint8 version ''' m_min= np.min(matrix) m_max= np.max(matrix) matrix = matrix-m_min return(np.array(np.rint( (matrix-m_min)/float(m_max-m_min) * 255.0),dtype=np.uint8)) #np.rint, Round elements of the array to the nearest integer.
def preprocess(img, crop=True, resize=True, dsize=(224, 224)): if img.dtype == np.uint8: img = img / 255.0 if crop: short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) crop_img = img[yy: yy + short_edge, xx: xx + short_edge] else: crop_img = img if resize: norm_img = imresize(crop_img, dsize, preserve_range=True) else: norm_img = crop_img return (norm_img).astype(np.float32) def deprocess(img): return np.clip(img * 255, 0, 255).astype(np.uint8)
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
