Delaunay Triangulation in OpenCascade
摘要:本文簡(jiǎn)要介紹了Delaunay三角剖分的基礎(chǔ)理論,并使用OpenCascade的三角剖分算法將邊界BRep表示的幾何體進(jìn)行三角離散化后在OpenSceneGraph中顯示。?
關(guān)鍵字:Delaunay Triangulation、OpenCascade、OpenSceneGraph?
一、 概述
三角剖分是平面剖分中的一個(gè)重要課題,在數(shù)字圖像處理、計(jì)算機(jī)三維曲面造型、有限元計(jì)算、逆向工程等領(lǐng)域有著廣泛應(yīng)用。由于三角形是平面域中的單純形,與其他平面圖形相比,其有描述方便、處理簡(jiǎn)單等特性,很適合于對(duì)復(fù)雜區(qū)域進(jìn)行簡(jiǎn)化處理。因此,無論在計(jì)算幾何、計(jì)算機(jī)圖形處理、模式識(shí)別、曲面逼近,還有有限元網(wǎng)格生成方面有廣泛的應(yīng)用。?
雖然曲線、曲面等有精確的方程來表示,但是在在計(jì)算機(jī)中,只能用離散的方式來逼近。如曲線可用直線段來逼近,而曲面可用多邊形或三角形來表示。用多邊形網(wǎng)格表示曲面是設(shè)計(jì)中經(jīng)常使用的形式,可以根據(jù)應(yīng)用要求選擇網(wǎng)格的密度。利用三角形面片表示的曲面在計(jì)算機(jī)圖形學(xué)中也稱為三角形網(wǎng)格。用三角形網(wǎng)格表示曲面需要解決幾個(gè)問題:三角形的產(chǎn)生、描述、遍歷、簡(jiǎn)化和壓縮等,這些問題都是計(jì)算幾何研究的范疇,相關(guān)問題都可以從中找到答案。下圖所示的圓柱和立方體是由OpenCascade生成,使用OpenCascade的算法離散成三角網(wǎng)格后在OpenSceneGraph中顯示的效果。?
Figure 1.1 Shaded Cylinder and Box?
Figure 1.2 Mesh generated by OpenCascade?
從圖中可以看出,平面的三角形網(wǎng)格效果還不錯(cuò),曲面的三角形網(wǎng)格表示只能是近似表示,可以通過提高網(wǎng)格的密度來增加真實(shí)性,但相應(yīng)渲染的數(shù)據(jù)量就大了。有人說OpenCascade的顯示模塊做得不是很好,上述方法則可以只使用OpenCascade的造型模塊,再結(jié)合OpenSceneGraph來對(duì)圖形進(jìn)行顯示。?
三維數(shù)據(jù)交換STL格式文件中保存的都是三角面片的數(shù)據(jù),STL文件格式是由美國(guó)3D System公司開發(fā),已被工業(yè)界認(rèn)為是目前快速自動(dòng)成型領(lǐng)域的準(zhǔn)標(biāo)準(zhǔn)零件描述文件格式。它對(duì)三維實(shí)體描述的解釋具有惟一性。幾乎所有的幾何造型系統(tǒng)都提供STL文件數(shù)據(jù)交換接口。OpenCascade中的數(shù)據(jù)交換模塊也提供對(duì)STL格式的支持,由此可見三角網(wǎng)格在幾何造型系統(tǒng)中的重要性。?
Voronoi圖和Delaunay三角剖分的應(yīng)用領(lǐng)域十分廣泛:幾何建?!脕韺ふ胰S曲面“好的”三角剖分;有限元分析——用來生成“好的”有限元網(wǎng)格;地理信息系統(tǒng)——用來進(jìn)行空間領(lǐng)域分析;結(jié)晶學(xué)——用來確定合金的結(jié)構(gòu);人類學(xué)和考古學(xué)——用來確定氏族部落、首領(lǐng)權(quán)威、居住中心或堡壘等的影響范圍;天文學(xué)——用來確定恒星和星系的分布;生物學(xué)生態(tài)學(xué)和林學(xué)——用來確定動(dòng)植物的競(jìng)爭(zhēng);動(dòng)物學(xué)——分析動(dòng)物的領(lǐng)地;統(tǒng)計(jì)學(xué)和數(shù)據(jù)分析——用來分析統(tǒng)計(jì)聚合;機(jī)器人學(xué)——用來進(jìn)行運(yùn)動(dòng)軌跡規(guī)劃(在存在障礙物的情況下);模式識(shí)別——作為尋找物體骨架點(diǎn)的工具;生理學(xué)——用來分析毛細(xì)作用的領(lǐng)域;氣象學(xué)——用來估計(jì)區(qū)域平均降雨量;市場(chǎng)學(xué)——用來建立城市的市場(chǎng)輻射范圍;以及在遙感圖像處理、化學(xué)、地理學(xué)、地質(zhì)學(xué)、冶金學(xué)、數(shù)學(xué)等學(xué)科的應(yīng)用等。?
本文只對(duì)OpenCascade中的三角剖分進(jìn)行簡(jiǎn)要介紹,希望對(duì)三角剖分在三維幾何造型方面有興趣的朋友可以對(duì)其深入研究。水平很有限,文中不當(dāng)之處歡迎批評(píng)指正、指導(dǎo),聯(lián)系郵箱: eryar@163.com 。?
二、 Voronoi圖
Dirichlet于1850年研究了平面點(diǎn)的鄰域問題,Voronoi于1908年將其結(jié)果擴(kuò)展到高維空間。半空間定義Voronoi圖:給定平面上n個(gè)點(diǎn)集S,S={p1, p2, …, pn}。定義:?
PiPj連線的垂直平分面將空間分為兩半,V(Pi)表示比其他點(diǎn)更接近Pi的點(diǎn)的軌跡是n-1個(gè)半平面的交,它是一個(gè)不多于n-1條邊的凸多邊形域,稱為關(guān)聯(lián)于Pi的Voronoi多邊形或關(guān)聯(lián)于Pi的Voronoi域。如下圖所示為關(guān)聯(lián)于P1的Voronoi多邊形,它是一個(gè)四邊形,而n=6.?
Figure 2.1 n=6時(shí)的一種V(p1)?
對(duì)于點(diǎn)集S中的每個(gè)點(diǎn)都可以做一個(gè)Voronoi多邊形,這樣的n個(gè)Voronoi多邊形組成的圖稱為Voronoi圖,記為Vor(S)。如下圖所示:?
Figure 2.2 Voronoi diagram for 10 randomly points (Generated by MATLAB)?
圖中的頂點(diǎn)和邊分別稱為Voronoi頂點(diǎn)和Voronoi邊。顯然,|S|=n時(shí),Vor(S)劃分平面成n個(gè)多邊形域,每個(gè)多邊形域V(Pi)包含S中的一個(gè)點(diǎn)而且只包含S中的一個(gè)點(diǎn),Vor(S)的邊是S中某點(diǎn)對(duì)的垂直平分線上的一條線段或半直線,從而為該點(diǎn)對(duì)所在的兩個(gè)多邊形域所共有。Vor(S)中有的多邊形域是無界的。?
Figure 2.3 Ten shops in a flat city and their Voronoi cells?
(http://en.wikipedia.org/wiki/Voronoi_diagram)?
Figure 2.4 Voronoi tessellation in a cylinder (Voro++ library: http://math.lbl.gov/voro++/)?
Voronoi圖有如下性質(zhì):?
l n個(gè)點(diǎn)的點(diǎn)集S的Voronoi圖至多有2n-5個(gè)頂點(diǎn)和3n-6條邊;?
l 每個(gè)Voronoi點(diǎn)恰好是三條Voronoi邊的交點(diǎn);?
l 設(shè)v是Vor(S)的頂點(diǎn),則圓C(v)內(nèi)不含S的其他點(diǎn);?
l 點(diǎn)集S中點(diǎn)Pi的每一個(gè)最近鄰近點(diǎn)確定V(Pi)的一條邊;?
l Voronoi圖的直線對(duì)偶圖是S的一個(gè)三角剖分;?
l 如果Pi,Pj屬于S,并且通過Pi,Pj有一個(gè)不包含S中其他點(diǎn)的圓,那么線段PiPj是點(diǎn)集S三角剖分的一條邊,反之亦成立。?
三、 Delaunay三角剖分?
1. 二維實(shí)數(shù)域上的三角剖分
假設(shè)V是二維實(shí)數(shù)域上的有限點(diǎn)集,邊e是由點(diǎn)集中的點(diǎn)作端點(diǎn)構(gòu)成的封閉線段,E為e的集合,那么該點(diǎn)集V的一個(gè)三角剖分T=(V,E)是一個(gè)平面圖:?
l 除了端點(diǎn),平面圖中的邊不包含點(diǎn)集中的任何點(diǎn);?
l 沒有相交邊;?
l 平面圖中所有的面都是三角面,且所有三角面的合集是點(diǎn)集V的凸包。?
2. Delaunay邊
假設(shè)E中的一條邊(兩端點(diǎn)a,b),e滿足下列條件,則稱為Delaunay邊:存在一個(gè)圓經(jīng)過a,b兩點(diǎn),圓內(nèi)不包含點(diǎn)集V中的任何的點(diǎn)。這一特性又稱為空?qǐng)A特性。?
3. Delaunay三角剖分
如果點(diǎn)集V的一個(gè)三角剖分T中只包含Delaunay邊,那么該三角剖分稱為Delaunay剖分。?
最近點(diǎn)意義下的Voronoi圖的對(duì)偶圖實(shí)際上是點(diǎn)集的一種三角剖分,該三角剖分就是Delaunay剖分(表示為DT(S)),其中每個(gè)三角形的外接圓不包含點(diǎn)集中的其他任何點(diǎn)。因此,在構(gòu)造點(diǎn)集的Voronoi圖之后,再作其對(duì)偶圖,即對(duì)每條Voronoi邊作通過點(diǎn)集中某兩點(diǎn)的垂直平分線,即得到Delaunay三角剖分。?
Figure 3.1 Delaunay Triangulation (Generated by MATLAB)?
再看幾個(gè)圖片,加深對(duì)Delaunay三角剖分的理解:?
Figure 3.2 Delaunay Edge??
Figure 3.3 Illustrate Delaunay Edge?
Figure 3.4 Delaunay Edge?
4. Delaunay三角剖分的特性
l 1978年Sibson證明了在二維的情況下,在點(diǎn)集的所有三角剖分中,Delaunay三角剖分使得生成的三角形的最小角達(dá)到最大(max-min angle)。因?yàn)檫@一特性,對(duì)于給定點(diǎn)集的Delaunay三角剖分總是盡可能避免“瘦長(zhǎng)”三角形,自動(dòng)向等邊三角形逼近;?
l 局部?jī)?yōu)化與整體優(yōu)化(locally optimal and globally optimal);?
l Delaunay空洞(cavity)與局部重連(local reconnection);?
5. 經(jīng)典的Delaunay三角剖分算法?
目前常用的算法分為幾種,有掃描線法(Sweepline)、隨機(jī)增量法(Incremental)、分治法(Divide and Conquer)等。?
經(jīng)典的Delaunay三角剖分算法主要有兩類:Bowyer/Watson算法和局部變換法。?
l Bowyer/Watson算法又稱為Delaunay空洞算法或加點(diǎn)法,以Bowyer和Watson算法為代表。從一個(gè)三角形開始,每次加一個(gè)點(diǎn),保證每一步得到的當(dāng)前三角形是局部?jī)?yōu)化的。以英國(guó)Bath大學(xué)數(shù)學(xué)分校Bowyer,Green,Sibson為代表的計(jì)算Dirichlet圖的方法屬于加點(diǎn)法,是較早成名的算法之一;以澳大利亞悉尼大學(xué)地學(xué)系Watson為代表的空外接球法也屬于加點(diǎn)法。加點(diǎn)法算法簡(jiǎn)明,是目前應(yīng)用最多的算法,該方法利用了Delaunay空洞性質(zhì)。Bowyer/Watson算法的優(yōu)點(diǎn)是與空間的維數(shù)無關(guān),并且算法在實(shí)現(xiàn)上比局部變換算法簡(jiǎn)單。該算法在新點(diǎn)加入到Delaunay網(wǎng)格時(shí),部分外接球包含新點(diǎn)的三角形單元不再符合Delaunay屬性,則這些三角形單元被刪除,形成Delaunay空洞,然后算法將新點(diǎn)與組成空洞的每一個(gè)頂點(diǎn)相連生成一個(gè)新邊,根據(jù)空球?qū)傩钥梢宰C明這些新邊都是局部Delaunay的,因此新生成的三角網(wǎng)格仍是Delaunay的。?
Figure 3.5 Illustration of 2D Bowyer/Watson algorithm for Delaunay Triangulation?
l 局部變換法又稱為換邊、換面法。當(dāng)利用局部變換法實(shí)現(xiàn)增量式點(diǎn)集的Delaunay三角剖分時(shí),首先定位新加入點(diǎn)所在的三角形,然后在網(wǎng)格中加入三個(gè)新的連接該三角形頂點(diǎn)與新頂點(diǎn)的邊,若該新點(diǎn)位于某條邊上,則該邊被刪除,四條連接該新點(diǎn)的邊被加入。最后,在通過換邊方法對(duì)該新點(diǎn)的局部區(qū)域內(nèi)的邊進(jìn)行檢測(cè)和變換,重新維護(hù)網(wǎng)格的Delaunay性質(zhì)。局部變換法的另一個(gè)優(yōu)點(diǎn)是其可以對(duì)已存在的三角網(wǎng)格進(jìn)行優(yōu)化,使其變換成為Delaunay三角網(wǎng)格,該方法的缺點(diǎn)則是當(dāng)算法擴(kuò)展到高維空間時(shí)變得較為復(fù)雜。?
四、 Delaunay三角剖分在OpenCascade的應(yīng)用
OpenCascade中網(wǎng)格剖分的包主要有BRepMesh、MeshAlgo、MeshVS,其中,類MeshAlgo_Delaunay使用算法Watson來進(jìn)行Delaunay三角剖分。從類StlTransfer中的注釋The triangulation is computed with the Delaunay algorithm implemented in package BRepMesh.可以看出包BRepMesh就是Delaunay三角剖分的具體實(shí)現(xiàn)。使用方法如下:?
BRepMesh::Mesh (aShape, Deflection);?
這個(gè)函數(shù)主要是用來對(duì)拓?fù)湫螤钸M(jìn)行三角剖分。以下通過將一個(gè)圓柱三角剖分為例說明如何將一個(gè)拓?fù)湫螤钸M(jìn)行三角剖分并將結(jié)果進(jìn)行可視化。?
/*
*
* Copyright (c) 2013 eryar All Rights Reserved.
*
* File : Main.cpp
* Author : eryar@163.com
* Date : 2013-05-26
* Version : 0.1
*
* Description : Use BRepMesh_Delaun class to learn
* Delaunay's triangulation algorithm.
*
*/
//
Open Cascade library.
#include <gp_Pnt.hxx>
#include
<gp_Pln.hxx>
#include
<BRep_Tool.hxx>
#include
<TopoDS.hxx>
#include
<TopoDS_Edge.hxx>
#include
<TopoDS_Wire.hxx>
#include
<TopoDS_Face.hxx>
#include
<BRepBuilderAPI_MakeEdge.hxx>
#include
<BRepBuilderAPI_MakeWire.hxx>
#include
<BRepBuilderAPI_MakeFace.hxx>
#include
<BRepPrimAPI_MakeBox.hxx>
#include
<BRepPrimAPI_MakeCone.hxx>
#include
<BRepPrimAPI_MakeCylinder.hxx>
#include
<BRepPrimApI_MakeSphere.hxx>
#include
<BRepMesh.hxx>
#include
<TopExp_Explorer.hxx>
#include
<Poly_Triangulation.hxx>
#include
<TShort_Array1OfShortReal.hxx>
#pragma
comment(lib, "TKernel.lib")
#pragma
comment(lib, "TKMath.lib")
#pragma
comment(lib, "TKBRep.lib")
#pragma
comment(lib, "TKPrim.lib")
#pragma
comment(lib, "TKMesh.lib")
#pragma
comment(lib, "TKTopAlgo.lib")
//
OpenSceneGraph library.
#include <osgDB/ReadFile>
#include
<osgViewer/Viewer>
#include
<osgViewer/ViewerEventHandlers>
#include
<osgGA/StateSetManipulator>
#pragma
comment(lib, "osgd.lib")
#pragma
comment(lib, "osgDbd.lib")
#pragma
comment(lib, "osgGAd.lib")
#pragma
comment(lib, "osgViewerd.lib")
osg::Node
* BuildShapeMesh(
const
TopoDS_Shape&
aShape)
{
osg::ref_ptr
<osg::Group> root =
new
osg::Group();
osg::ref_ptr
<osg::Geode> geode =
new
osg::Geode();
osg::ref_ptr
<osg::Geometry> triGeom =
new
osg::Geometry();
osg::ref_ptr
<osg::Vec3Array> vertices =
new
osg::Vec3Array();
osg::ref_ptr
<osg::Vec3Array> normals =
new
osg::Vec3Array();
BRepMesh::Mesh(aShape,
1
);
TopExp_Explorer faceExplorer;
for
(faceExplorer.Init(aShape, TopAbs_FACE); faceExplorer.More(); faceExplorer.Next())
{
TopLoc_Location loc;
TopoDS_Face aFace
=
TopoDS::Face(faceExplorer.Current());
Handle_Poly_Triangulation triFace
=
BRep_Tool::Triangulation(aFace, loc);
Standard_Integer nTriangles
= triFace->
NbTriangles();
gp_Pnt vertex1;
gp_Pnt vertex2;
gp_Pnt vertex3;
Standard_Integer nVertexIndex1
=
0
;
Standard_Integer nVertexIndex2
=
0
;
Standard_Integer nVertexIndex3
=
0
;
TColgp_Array1OfPnt nodes(
1
, triFace->
NbNodes());
Poly_Array1OfTriangle triangles(
1
, triFace->
NbTriangles());
nodes
= triFace->
Nodes();
triangles
= triFace->
Triangles();
for
(Standard_Integer i =
1
; i <= nTriangles; i++
)
{
Poly_Triangle aTriangle
=
triangles.Value(i);
aTriangle.Get(nVertexIndex1, nVertexIndex2, nVertexIndex3);
vertex1
=
nodes.Value(nVertexIndex1);
vertex2
=
nodes.Value(nVertexIndex2);
vertex3
=
nodes.Value(nVertexIndex3);
gp_XYZ vector12(vertex2.XYZ()
-
vertex1.XYZ());
gp_XYZ vector13(vertex3.XYZ()
-
vertex1.XYZ());
gp_XYZ normal
=
vector12.Crossed(vector13);
Standard_Real rModulus
=
normal.Modulus();
if
(rModulus >
gp::Resolution())
{
normal.Normalize();
}
else
{
normal.SetCoord(
0
.,
0
.,
0
.);
}
vertices
->
push_back(osg::Vec3(vertex1.X(), vertex1.Y(), vertex1.Z()));
vertices
->
push_back(osg::Vec3(vertex2.X(), vertex2.Y(), vertex2.Z()));
vertices
->
push_back(osg::Vec3(vertex3.X(), vertex3.Y(), vertex3.Z()));
normals
->
push_back(osg::Vec3(normal.X(), normal.Y(), normal.Z()));
}
}
triGeom
->setVertexArray(vertices.
get
());
triGeom
->addPrimitiveSet(
new
osg::DrawArrays(osg::PrimitiveSet::TRIANGLES,
0
, vertices->
size()));
triGeom
->
setNormalArray(normals);
triGeom
->
setNormalBinding(osg::Geometry::BIND_PER_PRIMITIVE);
geode
->
addDrawable(triGeom);
root
->
addChild(geode);
return
root.release();
}
int
main(
int
argc,
char
*
argv[])
{
osgViewer::Viewer myViewer;
osg::ref_ptr
<osg::Group> root =
new
osg::Group();
root
->addChild(BuildShapeMesh(BRepPrimAPI_MakeCylinder(.
6
,
1
)));
myViewer.setSceneData(root);
myViewer.addEventHandler(
new
osgGA::StateSetManipulator(myViewer.getCamera()->
getOrCreateStateSet()));
myViewer.addEventHandler(
new
osgViewer::StatsHandler);
myViewer.addEventHandler(
new
osgViewer::WindowSizeHandler);
return
myViewer.run();
}
結(jié)果如下圖所示:?
Figure 4.1 Cylinder mesh generated by BRepMesh::Mesh?
BRepMesh::Mesh是經(jīng)過封裝的,便于對(duì)拓?fù)湫螤钸M(jìn)行三角剖分。以下通過一個(gè)簡(jiǎn)單的例子來說明直接使用BRepMesh_Delaun的方法:?
/*
*
* Copyright (c) 2013 eryar All Rights Reserved.
*
* File : Main.cpp
* Author : eryar@163.com
* Date : 2013-05-26
* Version : 0.1
*
* Description : Use BRepMesh_Delaun class to learn
* Delaunay's triangulation algorithm.
*
*/
#include
<BRepMesh_Edge.hxx>
#include
<BRepMesh_Delaun.hxx>
#include
<BRepMesh_Array1OfVertexOfDelaun.hxx>
#include
<TColStd_MapIteratorOfMapOfInteger.hxx>
#pragma
comment(lib, "TKernel.lib")
#pragma
comment(lib, "TKMesh.lib")
int
main(
int
argc,
char
*
argv[])
{
BRepMesh_Array1OfVertexOfDelaun vertices(
1
,
4
);
vertices.SetValue(
1
, BRepMesh_Vertex(
0
,
0
, MeshDS_Free));
vertices.SetValue(
2
, BRepMesh_Vertex(
1
,
0
, MeshDS_Free));
vertices.SetValue(
3
, BRepMesh_Vertex(
1
,
1
, MeshDS_Free));
vertices.SetValue(
4
, BRepMesh_Vertex(
0
,
1
, MeshDS_Free));
BRepMesh_Delaun triangulation(vertices);
//
triangulation.AddVertex(BRepMesh_Vertex(0.5, 0.5, MeshDS_OnSurface));
Handle_BRepMesh_DataStructureOfDelaun meshData =
triangulation.Result();
std::cout
<<
"
Iterate Mesh Triangles:
"
<<
std::endl;
MeshDS_MapOfInteger::Iterator triDom;
for
(triDom.Initialize(meshData->
ElemOfDomain()); triDom.More(); triDom.Next())
{
Standard_Integer triId
=
triDom.Key();
const
BRepMesh_Triangle& curTri = meshData->
GetElement(triId);
Standard_Integer vertexIndex1
=
0
;
Standard_Integer vertexIndex2
=
0
;
Standard_Integer vertexIndex3
=
0
;
Standard_Integer edgeIndex1
=
0
;
Standard_Integer edgeIndex2
=
0
;
Standard_Integer edgeIndex3
=
0
;
Standard_Boolean o1
=
Standard_False;
Standard_Boolean o2
=
Standard_False;
Standard_Boolean o3
=
Standard_False;
curTri.Edges(edgeIndex1, edgeIndex2, edgeIndex3, o1, o2, o3);
const
BRepMesh_Edge& edge1 = meshData->
GetLink(edgeIndex1);
const
BRepMesh_Edge& edge2 = meshData->
GetLink(edgeIndex2);
const
BRepMesh_Edge& edge3 = meshData->
GetLink(edgeIndex3);
vertexIndex1
= (o1?
edge1.FirstNode(): edge1.LastNode());
vertexIndex2
= (o1?
edge1.LastNode() : edge1.FirstNode());
vertexIndex3
= (o2?
edge2.LastNode() : edge2.FirstNode());
const
BRepMesh_Vertex& vertex1 = meshData->
GetNode(vertexIndex1);
const
BRepMesh_Vertex& vertex2 = meshData->
GetNode(vertexIndex2);
const
BRepMesh_Vertex& vertex3 = meshData->
GetNode(vertexIndex3);
const
gp_XY& p1 =
vertex1.Coord();
const
gp_XY& p2 =
vertex2.Coord();
const
gp_XY& p3 =
vertex3.Coord();
std::cout
<<
"
--------
"
<<
std::endl;
std::cout
<<p1.X()<<
"
,
"
<<p1.Y()<<
std::endl;
std::cout
<<p2.X()<<
"
,
"
<<p2.Y()<<
std::endl;
std::cout
<<p3.X()<<
"
,
"
<<p3.Y()<<
std::endl;
std::cout
<<
"
========
"
<<
std::endl;
}
return
0
;
}
上述程序是以一個(gè)正方形為例,使用BRepMesh_Delaun三角剖分的結(jié)果為兩個(gè)三角形,如下所示:?
-------- ?
1 ?,? 1 ?
0 ?,? 0 ?
1 ?,? 0 ?
======== ?
-------- ?
1 ?,? 1 ?
0 ?,? 1 ?
0 ?,? 0 ?
======== ?
?以上結(jié)果都是二維空間上的,三維空間中的使用方法可以參考類:BRepMesh_FastDiscretFace。這個(gè)類說明了如何將一個(gè)面進(jìn)行網(wǎng)格劃分。?
五、 結(jié)論
Delaunay三角剖分理論在三維幾何造型中還是比較重要的,通過對(duì)形狀的三角剖分,不僅可以對(duì)其進(jìn)行可視化,還便于對(duì)形狀做進(jìn)一步的處理,如消隱、光照處理等。通過對(duì)OpenCascade中三角剖分算法的使用,以進(jìn)一步了解三角剖分理論應(yīng)用及其算法實(shí)現(xiàn)。?
六、 參考資料
1. 周培德. 計(jì)算幾何—算法設(shè)計(jì)與分析. 清華大學(xué)出版社, 2011?
2. 李海生. Delaunay三角剖分理論及可視化應(yīng)用研究. 哈爾濱工業(yè)大學(xué)出版社, 2010?
3. 何援軍. 計(jì)算機(jī)圖形學(xué). 機(jī)械工業(yè)出版社, 2010?
4. 周元峰, 孫峰, 王文平, 汪嘉業(yè), 張彩明. 基于局部修復(fù)的移動(dòng)數(shù)據(jù)點(diǎn)Delaunay三角化快速更新方法. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2011, 12: 2006-1012?
5. http://en.wikipedia.org/wiki/Voronoi_diagram
?
PDF Version: Delaunay Triangulation in OpenCascade
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061
微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元

