最小編輯距離或萊文斯坦距離(Levenshtein),指由字符串A轉化為字符串B的最小編輯次數。允許的編輯操作有:刪除,插入,替換。具體內容可參見:維基百科―萊文斯坦距離。一般代碼實現的方式都是通過動態規劃算法,找出從A轉化為B的每一步的最小步驟。從Google圖片借來的圖,
Python代碼實現, (其中要注意矩陣的下標從1開始,而字符串的下標從0開始):
def normal_leven(str1, str2): len_str1 = len(str1) + 1 len_str2 = len(str2) + 1 #create matrix matrix = [0 for n in range(len_str1 * len_str2)] #init x axis for i in range(len_str1): matrix[i] = i #init y axis for j in range(0, len(matrix), len_str1): if j % len_str1 == 0: matrix[j] = j // len_str1 for i in range(1, len_str1): for j in range(1, len_str2): if str1[i-1] == str2[j-1]: cost = 0 else: cost = 1 matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1, matrix[j*len_str1+(i-1)]+1, matrix[(j-1)*len_str1+(i-1)] + cost) return matrix[-1]
最近看文章看到Python庫提供了一個包difflib實現了從對象A轉化對象B的步驟,那么計算最小編輯距離的代碼也可以這樣寫了:
def difflib_leven(str1, str2): leven_cost = 0 s = difflib.SequenceMatcher(None, str1, str2) for tag, i1, i2, j1, j2 in s.get_opcodes(): #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2])) if tag == 'replace': leven_cost += max(i2-i1, j2-j1) elif tag == 'insert': leven_cost += (j2-j1) elif tag == 'delete': leven_cost += (i2-i1) return leven_cost
代碼地址
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
