欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

干貨|python利用LSTM進行時間序列分析預測

系統 1976 0

時間序列(或稱動態數列)是指將同一統計指標的數值按其發生的時間先后順序排列而成的數列。時間序列分析的主要目的是根據已有的歷史數據對未來進行預測。

時間序列構成要素:長期趨勢,季節變動,循環變動,不規則變動

  • 長期趨勢( T )現象在較長時期內受某種根本性因素作用而形成的總的變動趨勢
  • 季節變動( S )現象在一年內隨著季節的變化而發生的有規律的周期性變動
  • 循環變動( C )現象以若干年為周期所呈現出的波浪起伏形態的有規律的變動
  • 不規則變動(I )是一種無規律可循的變動,包括嚴格的隨機變動和不規則的突發性影響很大的變動兩種類型

(1)原始時間序列數據(只列出了18行)

            
              1455.219971
1399.420044
1402.109985
1403.449951
1441.469971
1457.599976
1438.560059
1432.25
1449.680054
1465.150024
1455.140015
1455.900024
1445.569946
1441.359985
1401.530029
1410.030029
1404.089966
1398.560059
            
          

2)處理數據使之符合LSTM的要求

為了更加直觀的了解數據格式,代碼中加入了一些打印(print),并且后面加了注釋,就是輸出值

            
              
                
                  def
                
                
                  load_data
                
                
                  (filename, seq_len)
                
                :
              
              
    f = open(filename, 
              
                'rb'
              
              ).read()
    data = f.split(
              
                '\n'
              
              )

    print(
              
                'data len:'
              
              ,len(data))       
              
                #4172
              
              
    print(
              
                'sequence len:'
              
              ,seq_len)     
              
                #50
              
              

    sequence_length = seq_len + 
              
                1
              
              
    result = []
    
              
                for
              
               index 
              
                in
              
               range(len(data) - sequence_length):
        result.append(data[index: index + sequence_length])  
              
                #得到長度為seq_len+1的向量,最后一個作為label
              
              

    print(
              
                'result len:'
              
              ,len(result))   
              
                #4121
              
              
    print(
              
                'result shape:'
              
              ,np.array(result).shape)  
              
                #(4121,51)
              
              

    result = np.array(result)

    
              
                #劃分train、test
              
              
    row = round(
              
                0.9
              
               * result.shape[
              
                0
              
              ])
    train = result[:row, :]
    np.random.shuffle(train)
    x_train = train[:, :-
              
                1
              
              ]
    y_train = train[:, -
              
                1
              
              ]
    x_test = result[row:, :-
              
                1
              
              ]
    y_test = result[row:, -
              
                1
              
              ]

    x_train = np.reshape(x_train, (x_train.shape[
              
                0
              
              ], x_train.shape[
              
                1
              
              ], 
              
                1
              
              ))
    x_test = np.reshape(x_test, (x_test.shape[
              
                0
              
              ], x_test.shape[
              
                1
              
              ], 
              
                1
              
              ))  

    print(
              
                'X_train shape:'
              
              ,X_train.shape)  
              
                #(3709L, 50L, 1L)
              
              
    print(
              
                'y_train shape:'
              
              ,y_train.shape)  
              
                #(3709L,)
              
              
    print(
              
                'X_test shape:'
              
              ,X_test.shape)    
              
                #(412L, 50L, 1L)
              
              
    print(
              
                'y_test shape:'
              
              ,y_test.shape)    
              
                #(412L,)
              
              
                return
              
               [x_train, y_train, x_test, y_test]
            
          

(3)LSTM模型

本文使用的是keras深度學習框架,讀者可能用的是其他的,諸如theano、tensorflow等,大同小異。

Keras LSTM官方文檔

LSTM的結構可以自己定制,Stack LSTM or Bidirectional LSTM

            
              
                
                  def
                
                
                  build_model
                
                
                  (layers)
                
                :
              
              
                #layers [1,50,100,1]
              
              
    model = Sequential()

    
              
                #Stack LSTM
              
              
    model.add(LSTM(input_dim=layers[
              
                0
              
              ],output_dim=layers[
              
                1
              
              ],return_sequences=
              
                True
              
              ))
    model.add(Dropout(
              
                0.2
              
              ))

    model.add(LSTM(layers[
              
                2
              
              ],return_sequences=
              
                False
              
              ))
    model.add(Dropout(
              
                0.2
              
              ))

    model.add(Dense(output_dim=layers[
              
                3
              
              ]))
    model.add(Activation(
              
                "linear"
              
              ))

    start = time.time()
    model.compile(loss=
              
                "mse"
              
              , optimizer=
              
                "rmsprop"
              
              )
    print(
              
                "Compilation Time : "
              
              , time.time() - start)
    
              
                return
              
               model
            
          

(4)LSTM訓練預測

1.直接預測

            
              
                
                  def
                
                
                  predict_point_by_point
                
                
                  (model, data)
                
                :
              
              
    predicted = model.predict(data)
    print(
              
                'predicted shape:'
              
              ,np.array(predicted).shape)  
              
                #(412L,1L)
              
              
    predicted = np.reshape(predicted, (predicted.size,))
    
              
                return
              
               predicted
            
          
干貨|python利用LSTM進行時間序列分析預測_第1張圖片

2.滾動預測

            
              def predict_sequence_full(model, data, window_size):  #data X_test
    curr_frame = data[
              
                0
              
              ]  #(
              
                50
              
              L,
              
                1
              
              L)
    predicted = []
    
              
                for
              
               i 
              
                in
              
               xrange(len(data)):
        #x = np.array(
              
                [[[1],[2],[3]]
              
              , 
              
                [[4],[5],[6]]
              
              ])  x.shape (
              
                2
              
              , 
              
                3
              
              , 
              
                1
              
              ) x[
              
                0
              
              ,
              
                0
              
              ] = array([
              
                1
              
              ])  x[:,np.newaxis,:,:].shape  (
              
                2
              
              , 
              
                1
              
              , 
              
                3
              
              , 
              
                1
              
              )
        predicted.append(model.predict(curr_frame[newaxis,:,:])[
              
                0
              
              ,
              
                0
              
              ])  #np.array(curr_frame[newaxis,:,:]).shape (
              
                1
              
              L,
              
                50
              
              L,
              
                1
              
              L)
        curr_frame = curr_frame[
              
                1
              
              :]
        curr_frame = np.insert(curr_frame, [window_size-
              
                1
              
              ], predicted[-
              
                1
              
              ], axis=
              
                0
              
              )   #numpy.insert(arr, obj, values, axis=None)
    
              
                return
              
               predicted
            
          
干貨|python利用LSTM進行時間序列分析預測_第2張圖片

2.滑動窗口+滾動預測

            
              
                
                  def
                
                
                  predict_sequences_multiple
                
                
                  (model, data, window_size, prediction_len)
                
                :
              
              
                #window_size = seq_len
              
              
    prediction_seqs = []
    
              
                for
              
               i 
              
                in
              
               xrange(len(data)/prediction_len):
        curr_frame = data[i*prediction_len]
        predicted = []
        
              
                for
              
               j 
              
                in
              
               xrange(prediction_len):
            predicted.append(model.predict(curr_frame[newaxis,:,:])[
              
                0
              
              ,
              
                0
              
              ])
            curr_frame = curr_frame[
              
                1
              
              :]
            curr_frame = np.insert(curr_frame, [window_size-
              
                1
              
              ], predicted[-
              
                1
              
              ], axis=
              
                0
              
              )
        prediction_seqs.append(predicted)
    
              
                return
              
               prediction_seqs
            
          
干貨|python利用LSTM進行時間序列分析預測_第3張圖片

(5)完整代碼

示例數據集 sp500.csv

            
              
                # -*- coding: utf-8 -*-
              
              
                from
              
               __future__ 
              
                import
              
               print_function


              
                import
              
               time

              
                import
              
               warnings

              
                import
              
               numpy 
              
                as
              
               np

              
                import
              
               time

              
                import
              
               matplotlib.pyplot 
              
                as
              
               plt

              
                from
              
               numpy 
              
                import
              
               newaxis

              
                from
              
               keras.layers.core 
              
                import
              
               Dense, Activation, Dropout

              
                from
              
               keras.layers.recurrent 
              
                import
              
               LSTM

              
                from
              
               keras.models 
              
                import
              
               Sequential

warnings.filterwarnings(
              
                "ignore"
              
              )


              
                
                  def
                
                
                  load_data
                
                
                  (filename, seq_len, normalise_window)
                
                :
              
              
    f = open(filename, 
              
                'rb'
              
              ).read()
    data = f.split(
              
                '\n'
              
              )

    print(
              
                'data len:'
              
              ,len(data))
    print(
              
                'sequence len:'
              
              ,seq_len)

    sequence_length = seq_len + 
              
                1
              
              
    result = []
    
              
                for
              
               index 
              
                in
              
               range(len(data) - sequence_length):
        result.append(data[index: index + sequence_length])  
              
                #得到長度為seq_len+1的向量,最后一個作為label
              
              

    print(
              
                'result len:'
              
              ,len(result))
    print(
              
                'result shape:'
              
              ,np.array(result).shape)
    print(result[:
              
                1
              
              ])

    
              
                if
              
               normalise_window:
        result = normalise_windows(result)

    print(result[:
              
                1
              
              ])
    print(
              
                'normalise_windows result shape:'
              
              ,np.array(result).shape)

    result = np.array(result)

    
              
                #劃分train、test
              
              
    row = round(
              
                0.9
              
               * result.shape[
              
                0
              
              ])
    train = result[:row, :]
    np.random.shuffle(train)
    x_train = train[:, :-
              
                1
              
              ]
    y_train = train[:, -
              
                1
              
              ]
    x_test = result[row:, :-
              
                1
              
              ]
    y_test = result[row:, -
              
                1
              
              ]

    x_train = np.reshape(x_train, (x_train.shape[
              
                0
              
              ], x_train.shape[
              
                1
              
              ], 
              
                1
              
              ))
    x_test = np.reshape(x_test, (x_test.shape[
              
                0
              
              ], x_test.shape[
              
                1
              
              ], 
              
                1
              
              ))  

    
              
                return
              
               [x_train, y_train, x_test, y_test]


              
                
                  def
                
                
                  normalise_windows
                
                
                  (window_data)
                
                :
              
              
    normalised_data = []
    
              
                for
              
               window 
              
                in
              
               window_data:   
              
                #window shape (sequence_length L ,)  即(51L,)
              
              
        normalised_window = [((float(p) / float(window[
              
                0
              
              ])) - 
              
                1
              
              ) 
              
                for
              
               p 
              
                in
              
               window]
        normalised_data.append(normalised_window)
    
              
                return
              
               normalised_data


              
                
                  def
                
                
                  build_model
                
                
                  (layers)
                
                :
              
              
                #layers [1,50,100,1]
              
              
    model = Sequential()

    model.add(LSTM(input_dim=layers[
              
                0
              
              ],output_dim=layers[
              
                1
              
              ],return_sequences=
              
                True
              
              ))
    model.add(Dropout(
              
                0.2
              
              ))

    model.add(LSTM(layers[
              
                2
              
              ],return_sequences=
              
                False
              
              ))
    model.add(Dropout(
              
                0.2
              
              ))

    model.add(Dense(output_dim=layers[
              
                3
              
              ]))
    model.add(Activation(
              
                "linear"
              
              ))

    start = time.time()
    model.compile(loss=
              
                "mse"
              
              , optimizer=
              
                "rmsprop"
              
              )
    print(
              
                "Compilation Time : "
              
              , time.time() - start)
    
              
                return
              
               model


              
                #直接全部預測
              
              
                
                  def
                
                
                  predict_point_by_point
                
                
                  (model, data)
                
                :
              
              
    predicted = model.predict(data)
    print(
              
                'predicted shape:'
              
              ,np.array(predicted).shape)  
              
                #(412L,1L)
              
              
    predicted = np.reshape(predicted, (predicted.size,))
    
              
                return
              
               predicted


              
                #滾動預測
              
              
                
                  def
                
                
                  predict_sequence_full
                
                
                  (model, data, window_size)
                
                :
              
              
                #data X_test
              
              
    curr_frame = data[
              
                0
              
              ]  
              
                #(50L,1L)
              
              
    predicted = []
    
              
                for
              
               i 
              
                in
              
               xrange(len(data)):
        
              
                #x = np.array([[[1],[2],[3]], [[4],[5],[6]]])  x.shape (2, 3, 1) x[0,0] = array([1])  x[:,np.newaxis,:,:].shape  (2, 1, 3, 1)
              
              
        predicted.append(model.predict(curr_frame[newaxis,:,:])[
              
                0
              
              ,
              
                0
              
              ])  
              
                #np.array(curr_frame[newaxis,:,:]).shape (1L,50L,1L)
              
              
        curr_frame = curr_frame[
              
                1
              
              :]
        curr_frame = np.insert(curr_frame, [window_size-
              
                1
              
              ], predicted[-
              
                1
              
              ], axis=
              
                0
              
              )   
              
                #numpy.insert(arr, obj, values, axis=None)
              
              
                return
              
               predicted


              
                
                  def
                
                
                  predict_sequences_multiple
                
                
                  (model, data, window_size, prediction_len)
                
                :
              
              
                #window_size = seq_len
              
              
    prediction_seqs = []
    
              
                for
              
               i 
              
                in
              
               xrange(len(data)/prediction_len):
        curr_frame = data[i*prediction_len]
        predicted = []
        
              
                for
              
               j 
              
                in
              
               xrange(prediction_len):
            predicted.append(model.predict(curr_frame[newaxis,:,:])[
              
                0
              
              ,
              
                0
              
              ])
            curr_frame = curr_frame[
              
                1
              
              :]
            curr_frame = np.insert(curr_frame, [window_size-
              
                1
              
              ], predicted[-
              
                1
              
              ], axis=
              
                0
              
              )
        prediction_seqs.append(predicted)
    
              
                return
              
               prediction_seqs


              
                
                  def
                
                
                  plot_results
                
                
                  (predicted_data, true_data, filename)
                
                :
              
              
    fig = plt.figure(facecolor=
              
                'white'
              
              )
    ax = fig.add_subplot(
              
                111
              
              )
    ax.plot(true_data, label=
              
                'True Data'
              
              )
    plt.plot(predicted_data, label=
              
                'Prediction'
              
              )
    plt.legend()
    plt.show()
    plt.savefig(filename+
              
                '.png'
              
              )


              
                
                  def
                
                
                  plot_results_multiple
                
                
                  (predicted_data, true_data, prediction_len)
                
                :
              
              
    fig = plt.figure(facecolor=
              
                'white'
              
              )
    ax = fig.add_subplot(
              
                111
              
              )
    ax.plot(true_data, label=
              
                'True Data'
              
              )
    
              
                #Pad the list of predictions to shift it in the graph to it's correct start
              
              
                for
              
               i, data 
              
                in
              
               enumerate(predicted_data):
        padding = [
              
                None
              
              
                for
              
               p 
              
                in
              
               xrange(i * prediction_len)]
        plt.plot(padding + data, label=
              
                'Prediction'
              
              )
        plt.legend()
    plt.show()
    plt.savefig(
              
                'plot_results_multiple.png'
              
              )


              
                if
              
               __name__==
              
                '__main__'
              
              :
    global_start_time = time.time()
    epochs  = 
              
                1
              
              
    seq_len = 
              
                50
              
              

    print(
              
                '> Loading data... '
              
              )

    X_train, y_train, X_test, y_test = lstm.load_data(
              
                'sp500.csv'
              
              , seq_len, 
              
                True
              
              )

    print(
              
                'X_train shape:'
              
              ,X_train.shape)  
              
                #(3709L, 50L, 1L)
              
              
    print(
              
                'y_train shape:'
              
              ,y_train.shape)  
              
                #(3709L,)
              
              
    print(
              
                'X_test shape:'
              
              ,X_test.shape)    
              
                #(412L, 50L, 1L)
              
              
    print(
              
                'y_test shape:'
              
              ,y_test.shape)    
              
                #(412L,)
              
              

    print(
              
                '> Data Loaded. Compiling...'
              
              )

    model = lstm.build_model([
              
                1
              
              , 
              
                50
              
              , 
              
                100
              
              , 
              
                1
              
              ])

    model.fit(X_train,y_train,batch_size=
              
                512
              
              ,nb_epoch=epochs,validation_split=
              
                0.05
              
              )

    multiple_predictions = lstm.predict_sequences_multiple(model, X_test, seq_len, prediction_len=
              
                50
              
              )
    print(
              
                'multiple_predictions shape:'
              
              ,np.array(multiple_predictions).shape)   
              
                #(8L,50L)
              
              

    full_predictions = lstm.predict_sequence_full(model, X_test, seq_len)
    print(
              
                'full_predictions shape:'
              
              ,np.array(full_predictions).shape)    
              
                #(412L,)
              
              

    point_by_point_predictions = lstm.predict_point_by_point(model, X_test)
    print(
              
                'point_by_point_predictions shape:'
              
              ,np.array(point_by_point_predictions).shape)  
              
                #(412L)
              
              

    print(
              
                'Training duration (s) : '
              
              , time.time() - global_start_time)

    plot_results_multiple(multiple_predictions, y_test, 
              
                50
              
              )
    plot_results(full_predictions,y_test,
              
                'full_predictions'
              
              )
    plot_results(point_by_point_predictions,y_test,
              
                'point_by_point_predictions'
              
              )
            
          

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 亚洲精品在线不卡 | 亚洲免费视 | 日本在线免费观看 | 欧美在线另类 | 国产亚洲精品久久久久久打不开 | 四虎伊人 | 欧美午夜精品久久久久免费视 | 精品一区二区免费视频视频 | 成人免费黄色 | 欧美激烈大尺度叫床的床戏 | 成人亚洲网| 精品亚洲成a人片在线观看 在线看片h站 | 午夜日韩精品 | 日韩国产在线 | 国产一区二区三区四 | 浮力影院国产第一页 | 亚洲视频区 | 日韩www | 九九久久精品这里久久网 | 久久久久久福利 | 欧美亚洲在线视频 | 不卡一区 | 高清一区二区亚洲欧美日韩 | 亚洲欧美日韩综合在线 | 日韩三区 | 一区二区三区福利视频 | 欧美成年网站 | 欧美在线一区视频 | 草久网 | 欧美1级 | 精品欧美一区二区vr在线观看 | 亚洲视频在线播放 | 亚洲 日本 欧美 中文幕 | 成人激情视频在线观看 | 欧美视频www| 超碰97免费观看 | 一级黄色毛片子 | 国产成人综合欧美精品久久 | avtom影院 首页亚洲 | 日韩一区二区不卡 | 中文字幕亚洲一区二区三区 |