一、深度優先搜索
深度優先搜索就是在搜索樹的每一層始終先只擴展一個子節點,不斷地向縱深前進直到不能再前進(到達葉子節點或受到深度限制)時,才從當前節點返回到上一級節點,沿另一方向又繼續前進。這種方法的搜索樹是從樹根開始一枝一枝逐漸形成的。
深度優先搜索亦稱為縱向搜索。由于一個有解的問題樹可能含有無窮分枝,深度優先搜索如果誤入無窮分枝(即深度無限),則不可能找到目標節點。所以,深度優先搜索策略是不完備的。另外,應用此策略得到的解不一定是最佳解(最短路徑)。
二、 重排九宮問題游戲
在一個3乘3的九宮中有1-8的8個數及一個空格隨機擺放在其中的格子里。如下面左圖所示?,F在要求實現這樣的問題:將該九宮調整為如下圖右圖所示的形式。調整規則是:每次只能將與空格(上,下或左,右)相臨的一個數字平移到空格中。試編程實現。
| 2 | 8 | 3 | | 1 | 2 | 3 |
-
| 1 | | 4 | | 8 | | 4 |
| 7 |6 | 5 | | 7 | 6 | 5 |
深度優先搜索的路徑示意圖:
三、廣度優先搜索
在深度優先搜索算法中,是深度越大的結點越先得到擴展。如果在搜索中把算法改為按結點的層次進行搜索, 本層的結點沒有搜索處理完時,不能對下層結點進行處理,即深度越小的結點越先得到擴展,也就是說先產生 的結點先得以擴展處理,這種搜索算法稱為廣度優先搜索法。
四、航班問題(來自《The Art of Java》)
一位顧客要預定一張從New York到Los Angeles的航班機票,下面是航班線路,請你為顧客找一種購票方案。
航班
|
距離
|
New York到Chicago |
900英里
|
Chicago到Denver |
1000英里
|
New York到Toronto |
500英里
|
New York到Denver |
1800英里
|
Toronto到Calgary |
1700英里
|
Toronto到Los Angeles |
2500英里
|
Toronto到Chicago |
500英里
|
Denver到Urbana |
1000英里
|
Denver到Houston |
1000英里
|
Houston到Los Angeles |
1500英里
|
Denver到Los Angeles |
1000英里
|
下面是用深度優先搜索求解的程序:
import java.util. * ;
import java.io. * ;
// Flightinformation.
class FlightInfo{
Stringfrom;
Stringto;
int distance;
boolean skip; // usedinbacktracking
FlightInfo(Stringf,Stringt, int d){
from = f;
to = t;
distance = d;
skip = false ;
}
}
class Depth{
final int MAX = 100 ;
// Thisarrayholdstheflightinformation.
FlightInfoflights[] = new FlightInfo[MAX];
int numFlights = 0 ; // numberofentriesinflightarray
StackbtStack = new Stack(); // backtrackstack
public static void main(Stringargs[])
{
Stringto,from;
Depthob = new Depth();
BufferedReaderbr = new
BufferedReader( new InputStreamReader(System.in));
ob.setup();
try {
System.out.print( " From? " );
from = br.readLine();
System.out.print( " To? " );
to = br.readLine();
ob.isflight(from,to);
if (ob.btStack.size() != 0 )
ob.route(to);
} catch (IOExceptionexc){
System.out.println( " Erroroninput. " );
}
}
// Initializetheflightdatabase.
void setup()
{
addFlight( " NewYork " , " Chicago " , 900 );
addFlight( " Chicago " , " Denver " , 1000 );
addFlight( " NewYork " , " Toronto " , 500 );
addFlight( " NewYork " , " Denver " , 1800 );
addFlight( " Toronto " , " Calgary " , 1700 );
addFlight( " Toronto " , " LosAngeles " , 2500 );
addFlight( " Toronto " , " Chicago " , 500 );
addFlight( " Denver " , " Urbana " , 1000 );
addFlight( " Denver " , " Houston " , 1000 );
addFlight( " Houston " , " LosAngeles " , 1500 );
addFlight( " Denver " , " LosAngeles " , 1000 );
}
// Putflightsintothedatabase.
void addFlight(Stringfrom,Stringto, int dist)
{
if (numFlights < MAX){
flights[numFlights] =
new FlightInfo(from,to,dist);
numFlights ++ ;
}
else System.out.println( " Flightdatabasefull. " );
}
// Showtherouteandtotaldistance.
void route(Stringto)
{
Stackrev = new Stack();
int dist = 0 ;
FlightInfof;
int num = btStack.size();
// Reversethestacktodisplayroute.
for ( int i = 0 ;i < num;i ++ )
rev.push(btStack.pop());
for ( int i = 0 ;i < num;i ++ ){
f = (FlightInfo)rev.pop();
System.out.print(f.from + " to " );
dist += f.distance;
}
System.out.println(to);
System.out.println( " Distanceis " + dist);
}
/* Ifthereisaflightbetweenfromandto,
returnthedistanceofflight;
otherwise,return0. */
int match(Stringfrom,Stringto)
{
for ( int i = numFlights - 1 ;i > - 1 ;i -- ){
if (flights[i].from.equals(from) &&
flights[i].to.equals(to) &&
! flights[i].skip)
{
flights[i].skip = true ; // preventreuse
return flights[i].distance;
}
}
return 0 ; // notfound
}
// Givenfrom,findanyconnection.
FlightInfofind(Stringfrom)
{
for ( int i = 0 ;i < numFlights;i ++ ){
if (flights[i].from.equals(from) &&
! flights[i].skip)
{
FlightInfof = new FlightInfo(flights[i].from,
flights[i].to,
flights[i].distance);
flights[i].skip = true ; // preventreuse
return f;
}
}
return null ;
}
// Determineifthereisaroutebetweenfromandto.
void isflight(Stringfrom,Stringto)
{
int dist;
FlightInfof;
// Seeifatdestination.
dist = match(from,to);
if (dist != 0 ){
btStack.push( new FlightInfo(from,to,dist));
return ;
}
// Tryanotherconnection.
f = find(from);
if (f != null ){
btStack.push( new FlightInfo(from,to,f.distance));
isflight(f.to,to);
}
else if (btStack.size() > 0 ){
// Backtrackandtryanotherconnection.
f = (FlightInfo)btStack.pop();
isflight(f.from,f.to);
}
}
}
解釋:isflight()方法用遞歸方法進行深度優先搜索,它先調用match()方法檢查航班的數據庫,判斷在from和to之間有沒有航班可達。如果有,則獲取目標信息,并將該線路壓入棧中,然后返回(找到一個方案)。否則,就調用find()方法查找from與任意其它城市之間的線路,如果找到一條就返回描述該線路的FlightInfo對象,否則返回null。如果存在這樣的一條線路,那么就把該線路保存在f中,并將當前航班信息壓到棧的頂部,然后遞歸調用isflight()方法 ,此時保存在f.to中的城市成為新的出發城市.否則就進行回退,彈出棧頂的第一個節點,然后遞歸調用isflight()方法。該過程將一直持續到找到目標為止。
程序運行結果:
C:\java>java Depth
From? New York
To? Los Angeles
New York to Chicago to Denver to Los Angeles
Distance is 2900
C:\java>
深度優先搜索能夠找到一個解,同時,對于上面這個特定問題,深度優先搜索沒有經過回退,一次就找到了一個解;但如果數據的組織方式不同,尋找解時就有可能進行多次回退。因此這個例子的輸出并不具有普遍性。而且,在搜索一個很長,但是其中并沒有解的分支的時候,深度優先搜索的性能將會很差,在這種情況下,深度優先搜索不僅在搜索這條路徑時浪費時間,而且還在向目標的回退中浪費時間。
再看對這個例子使用廣度優先搜索的程序:
程序運行結果:
C:\java>java Breadth
From? New York
To? Los Angeles
New York to Toronto to Los Angeles
Distance is 3000
import java.util. * ;
import java.io. * ;
// Flightinformation.
class FlightInfo{
Stringfrom;
Stringto;
int distance;
boolean skip; // usedinbacktracking
FlightInfo(Stringf,Stringt, int d){
from = f;
to = t;
distance = d;
skip = false ;
}
}
class Breadth{
final int MAX = 100 ;
// Thisarrayholdstheflightinformation.
FlightInfoflights[] = new FlightInfo[MAX];
int numFlights = 0 ; // numberofentriesinflightarray
StackbtStack = new Stack(); // backtrackstack
public static void main(Stringargs[])
{
Stringto,from;
Breadthob = new Breadth();
BufferedReaderbr = new
BufferedReader( new InputStreamReader(System.in));
ob.setup();
try {
System.out.print( " From? " );
from = br.readLine();
System.out.print( " To? " );
to = br.readLine();
ob.isflight(from,to);
if (ob.btStack.size() != 0 )
ob.route(to);
} catch (IOExceptionexc){
System.out.println( " Erroroninput. " );
}
}
// Initializetheflightdatabase.
void setup()
{
addFlight( " NewYork " , " Chicago " , 900 );
addFlight( " Chicago " , " Denver " , 1000 );
addFlight( " NewYork " , " Toronto " , 500 );
addFlight( " NewYork " , " Denver " , 1800 );
addFlight( " Toronto " , " Calgary " , 1700 );
addFlight( " Toronto " , " LosAngeles " , 2500 );
addFlight( " Toronto " , " Chicago " , 500 );
addFlight( " Denver " , " Urbana " , 1000 );
addFlight( " Denver " , " Houston " , 1000 );
addFlight( " Houston " , " LosAngeles " , 1500 );
addFlight( " Denver " , " LosAngeles " , 1000 );
}
// Putflightsintothedatabase.
void addFlight(Stringfrom,Stringto, int dist)
{
if (numFlights < MAX){
flights[numFlights] =
new FlightInfo(from,to,dist);
numFlights ++ ;
}
else System.out.println( " Flightdatabasefull. " );
}
// Showtherouteandtotaldistance.
void route(Stringto)
{
Stackrev = new Stack();
int dist = 0 ;
FlightInfof;
int num = btStack.size();
// Reversethestacktodisplayroute.
for ( int i = 0 ;i < num;i ++ )
rev.push(btStack.pop());
for ( int i = 0 ;i < num;i ++ ){
f = (FlightInfo)rev.pop();
System.out.print(f.from + " to " );
dist += f.distance;
}
System.out.println(to);
System.out.println( " Distanceis " + dist);
}
/* Ifthereisaflightbetweenfromandto,
returnthedistanceofflight;
otherwise,return0. */
int match(Stringfrom,Stringto)
{
for ( int i = numFlights - 1 ;i > - 1 ;i -- ){
if (flights[i].from.equals(from) &&
flights[i].to.equals(to) &&
! flights[i].skip)
{
flights[i].skip = true ; // preventreuse
return flights[i].distance;
}
}
return 0 ; // notfound
}
// Givenfrom,findanyconnection.
FlightInfofind(Stringfrom)
{
for ( int i = 0 ;i < numFlights;i ++ ){
if (flights[i].from.equals(from) &&
! flights[i].skip)
{
FlightInfof = new FlightInfo(flights[i].from,
flights[i].to,
flights[i].distance);
flights[i].skip = true ; // preventreuse
return f;
}
}
return null ;
}
/* Determineifthereisaroutebetweenfromandto
usingbreadth-firstsearch. */
void isflight(Stringfrom,Stringto)
{
int dist,dist2;
FlightInfof;
// Thisstackisneededbythebreadth-firstsearch.
StackresetStck = new Stack();
// Seeifatdestination.
dist = match(from,to);
if (dist != 0 ){
btStack.push( new FlightInfo(from,to,dist));
return ;
}
/* Followingisthefirstpartofthebreadth-first
modification.Itchecksallconnectingflights
fromaspecifiednode. */
while ((f = find(from)) != null ){
resetStck.push(f);
if ((dist = match(f.to,to)) != 0 ){
resetStck.push(f.to);
btStack.push( new FlightInfo(from,f.to,f.distance));
btStack.push( new FlightInfo(f.to,to,dist));
return ;
}
}
/* Thefollowingcoderesetstheskipfieldssetby
precedingwhileloop.Thisisalsopartofthe
breadth-firstmodifiction. */
int i = resetStck.size();
for (;i != 0 ;i -- )
resetSkip((FlightInfo)resetStck.pop());
// Tryanotherconnection.
f = find(from);
if (f != null ){
btStack.push( new FlightInfo(from,to,f.distance));
isflight(f.to,to);
}
else if (btStack.size() > 0 ){
// Backtrackandtryanotherconnection.
f = (FlightInfo)btStack.pop();
isflight(f.from,f.to);
}
}
// Resetskipfieldofspecifiedflight.
void resetSkip(FlightInfof){
for ( int i = 0 ;i < numFlights;i ++ )
if (flights[i].from.equals(f.from) &&
flights[i].to.equals(f.to))
flights[i].skip = false ;
}
}
C:\java>
它找到了一個合理的解,但這不具有一般性。因為找到的第一條路徑取決于信息的物理組織形式。
如果目標在搜索空間中隱藏得不是太深,那么廣度優先搜索的性能會很好。
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
