??? 從業界使用分布式系統的變化趨勢和 hadoop 框架的長遠發展來看,MapReduce 的 JobTracker/TaskTracker 機制需要大規模的調整來修復它在可擴展性,內存消耗,線程模型,可靠性和性能上的缺陷。在過去的幾年中,hadoop 開發團隊做了一些 bug 的修復,但是最近這些修復的成本越來越高,這表明對原框架做出改變的難度越來越大。
??? 為從根本上解決舊 MapReduce 框架的性能瓶頸,促進 Hadoop 框架的更長遠發展,從 0.23.0 版本開始,Hadoop 的 MapReduce 框架完全重構,發生了根本的變化。新的 Hadoop MapReduce 框架命名為 MapReduceV2 或者叫 Yarn,其架構圖如下圖所示:
重構根本的思想是將 JobTracker 兩個主要的功能分離成單獨的組件,這兩個功能是資源管理和任務調度 / 監控。新的資源管理器全局管理所有應用程序計算資源的分配,每一個應用的 ApplicationMaster 負責相應的調度和協調。一個應用程序無非是一個單獨的傳統的 MapReduce 任務或者是一個 DAG( 有向無環圖 ) 任務。ResourceManager 和每一臺機器的節點管理服務器能夠管理用戶在那臺機器上的進程并能對計算進行組織。
事實上,每一個應用的 ApplicationMaster 是一個詳細的框架庫,它結合從 ResourceManager 獲得的資源和 NodeManager 協同工作來運行和監控任務。
上圖中 ResourceManager 支持分層級的應用隊列,這些隊列享有集群一定比例的資源。從某種意義上講它就是一個純粹的調度器,它在執行過程中不對應用進行監控和狀態跟蹤。同樣,它也不能重啟因應用失敗或者硬件錯誤而運行失敗的任務。
ResourceManager 是基于應用程序對資源的需求進行調度的 ; 每一個應用程序需要不同類型的資源因此就需要不同的容器。資源包括:內存,CPU,磁盤,網絡等等。可以看出,這同現 Mapreduce 固定類型的資源使用模型有顯著區別,它給集群的使用帶來負面的影響。資源管理器提供一個調度策略的插件,它負責將集群資源分配給多個隊列和應用程序。調度插件可以基于現有的能力調度和公平調度模型。
上圖中 NodeManager 是每一臺機器框架的代理,是執行應用程序的容器,監控應用程序的資源使用情況 (CPU,內存,硬盤,網絡 ) 并且向調度器匯報。
每一個應用的 ApplicationMaster 的職責有:向調度器索要適當的資源容器,運行任務,跟蹤應用程序的狀態和監控它們的進程,處理任務的失敗原因。
作者簡介
昵稱:澳洲鳥,貓頭哥
姓名:樸海林
QQ:85977328
MSN:6301655@163.com
本文的研究,離不開《至高天》朋友們的支持
貓頭哥:http://phl.iteye.com/
根根:http://blog.csdn.net/suileisl
芝麻的奮斗:http://sesame84.iteye.com/
wan560:http://blog.csdn.net/wan560/
terrily:http://terrily.iteye.com/
??? 為從根本上解決舊 MapReduce 框架的性能瓶頸,促進 Hadoop 框架的更長遠發展,從 0.23.0 版本開始,Hadoop 的 MapReduce 框架完全重構,發生了根本的變化。新的 Hadoop MapReduce 框架命名為 MapReduceV2 或者叫 Yarn,其架構圖如下圖所示:

重構根本的思想是將 JobTracker 兩個主要的功能分離成單獨的組件,這兩個功能是資源管理和任務調度 / 監控。新的資源管理器全局管理所有應用程序計算資源的分配,每一個應用的 ApplicationMaster 負責相應的調度和協調。一個應用程序無非是一個單獨的傳統的 MapReduce 任務或者是一個 DAG( 有向無環圖 ) 任務。ResourceManager 和每一臺機器的節點管理服務器能夠管理用戶在那臺機器上的進程并能對計算進行組織。
事實上,每一個應用的 ApplicationMaster 是一個詳細的框架庫,它結合從 ResourceManager 獲得的資源和 NodeManager 協同工作來運行和監控任務。
上圖中 ResourceManager 支持分層級的應用隊列,這些隊列享有集群一定比例的資源。從某種意義上講它就是一個純粹的調度器,它在執行過程中不對應用進行監控和狀態跟蹤。同樣,它也不能重啟因應用失敗或者硬件錯誤而運行失敗的任務。
ResourceManager 是基于應用程序對資源的需求進行調度的 ; 每一個應用程序需要不同類型的資源因此就需要不同的容器。資源包括:內存,CPU,磁盤,網絡等等。可以看出,這同現 Mapreduce 固定類型的資源使用模型有顯著區別,它給集群的使用帶來負面的影響。資源管理器提供一個調度策略的插件,它負責將集群資源分配給多個隊列和應用程序。調度插件可以基于現有的能力調度和公平調度模型。
上圖中 NodeManager 是每一臺機器框架的代理,是執行應用程序的容器,監控應用程序的資源使用情況 (CPU,內存,硬盤,網絡 ) 并且向調度器匯報。
每一個應用的 ApplicationMaster 的職責有:向調度器索要適當的資源容器,運行任務,跟蹤應用程序的狀態和監控它們的進程,處理任務的失敗原因。
作者簡介
昵稱:澳洲鳥,貓頭哥
姓名:樸海林
QQ:85977328
MSN:6301655@163.com
本文的研究,離不開《至高天》朋友們的支持
貓頭哥:http://phl.iteye.com/
根根:http://blog.csdn.net/suileisl
芝麻的奮斗:http://sesame84.iteye.com/
wan560:http://blog.csdn.net/wan560/
terrily:http://terrily.iteye.com/
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
